Browse > Article
http://dx.doi.org/10.9729/AM.2016.46.4.206

Transmission Electron Microscopy on Memristive Devices: An Overview  

Strobel, Julian (Kiel University, Faculty of Engineering, Institute for Materials Science)
Neelisetty, Krishna Kanth (Karlsruhe Institute of Technology, Institute of Nanotechnology)
Chakravadhanula, Venkata Sai Kiran (Karlsruhe Institute of Technology, Institute of Nanotechnology)
Kienle, Lorenz (Kiel University, Faculty of Engineering, Institute for Materials Science)
Publication Information
Applied Microscopy / v.46, no.4, 2016 , pp. 206-216 More about this Journal
Abstract
This communication is to elucidate the state-of-the-art of techniques necessary to gather information on a new class of nanoelectronic devices known as memristors and related resistive switching devices, respectively. Unlike classical microelectronic devices such as transistors, the chemical and structural variations occurring upon switching of memristive devices require cutting-edge electron microscopy techniques. Depending on the switching mechanism, some memristors call for the acquisition of atomically resolved structural data, while others rely on atomistic chemical phenomena requiring the application of advanced X-ray and electron spectroscopy to correlate the real structure with properties. Additionally, understanding resistive switching phenomena also necessitates the application not only of pre- and post-operation analysis, but also during the process of switching. This highly challenging in situ characterization also requires the aforementioned techniques while simultaneously applying an electrical bias. Through this review we aim to give an overview of the possibilities and challenges as well as an outlook onto future developments in the field of nanoscopic characterization of memristive devices.
Keywords
Memristor; Resistive switching; Transmission electron microscopy; Spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pino R E, Bohl J W, McDonald N, Wysocki B, Rozwood P, Campbell K A, Oblea A, and Timilsina A (2010) Compact method for modeling and simulation of memristor devices: ion conductor chalcogenide-based memristor devices. In: 2010 IEEE/ACM International Symposium on Nanoscale Architectures, pp. 1-4, (IEEE).
2 Privitera S, Bersuker G, Butcher B, Kalantarian A, Lombardo S, Bongiorno C, Geer R, Gilmer D C, and Kirsch P D (2013) Microscopy study of the conductive filament in $HfO_2$ resistive switching memory devices. Microelectron. Eng. 109, 75-78.   DOI
3 Privitera S, Bersuker G, Lombardo S, Bongiorno C, and Gilmer D C (2015) Conductive filament structure in $HfO_2$ resistive switching memory devices. Solid-State Electron. 111, 161-165.   DOI
4 Qian K, Nguyen V C, Chen T, and Lee P S (2016a) Amorphous-Si-based resistive switching memories with highly reduced electroforming voltage and enlarged memory window. Adv. Electron. Mater. 2, 1500370.   DOI
5 Qian K, Tay R Y, Nguyen V C, Wang J, Cai G, Chen T, Teo E H T, and Lee P S (2016b) Hexagonal boron nitride thin film for flexible resistive memory applications. Adv. Funct. Mater. 26, 2176-2184.   DOI
6 Savel'ev S E, Alexandrov A S, Bratkovsky A M, and Williams R S (2011) Molecular dynamics simulations of oxide memristors: thermal effects. Appl. Phys. A: Mater. Sci. Process. 102, 891-895.   DOI
7 Seo S, Lee M J, Seo D H, Jeoung E J, Suh D S, Joung Y S, Yoo I K, Hwang I R, Kim S H, Byun I S, Kim J S, Choi J S, and Park B H (2004) Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655-5657.   DOI
8 Song J, Zhang Y, Xu C, Wu W, and Wang Z L (2011) Polar charges induced electric hysteresis of ZnO nano/microwire for fast data storage. Nano Lett. 11, 2829-2834.   DOI
9 Yan H, Choe H S, Nam S, Hu Y, Das S, Klemic J F, Ellenbogen J C, and Lieber C M (2011) Programmable nanowire circuits for nanoprocessors. Nature 470, 240-244.   DOI
10 Xia Q, Robinett W, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X, Tong W M, Strukov D B, Snider G S, Medeiros-Ribeiro G, and Williams R S (2009) Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640-3645.   DOI
11 Yang Y, Gao P, Gaba S, Chang T, Pan X, and Lu W (2012) Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732.   DOI
12 Vieweg B F, Butz B, Peukert W, Klupp Taylor R N, and Spiecker E (2012) TEM preparation method for site- and orientation-specific sectioning of individual anisotropic nanoparticles based on shadow-FIB geometry. Ultramicroscopy 113, 165-170.   DOI
13 Tian X, Wang L, Wei J, Yang S, Wang W, Xu Z, and Bai X (2014) Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM. Nano Res. 7, 1065-1072.   DOI
14 Toufik S, Liping W, Louis G, and Asen A (2015) Physical simulation of sibased resistive randomaccess memory devices. In: Proceedings from SISPAD 2015, pp. 385-388, (IEEE).
15 Tseng A A (2004) Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 14, R15.   DOI
16 Valov I and Kozicki M N (2013) Cation-based resistance change memory. J. Phys. D: Appl. Phys. 46, 74005.   DOI
17 Vasudevan R K, Matsumoto Y, Cheng X, Imai A, Maruyama S, Xin H L, Okatan M B, Jesse S, Kalinin S V, and Nagarajan V (2014) Deterministic arbitrary switching of polarization in a ferroelectric thin film. Nat. Commun. 5, 4971.   DOI
18 Waser R (2012) Redox-based resistive switching memories. J. Nanosci. Nanotechnol. 12, 7628-7640.   DOI
19 Wu X, Li K, Raghavan N, Bosman M, Wang Q X, Cha D, Zhang X X, and Pey K L (2011) Uncorrelated multiple conductive filament nucleation and rupture in ultra-thin high-${\kappa}$ dielectric based resistive random access memory. Appl. Phys. Lett. 99, 93502.   DOI
20 Xia Q (2011) Nanoscale resistive switches: devices, fabrication and integration. Appl. Phys. A: Mater. Sci. Process. 102, 955-965.   DOI
21 Calka P, Martinez E, Delaye V, Lafond D, Audoit G, Mariolle D, Chevalier N, Grampeix H, Cagli C, Jousseaume V, and Guedj C (2013) Chemical and structural properties of conducting nanofilaments in TiN/$HfO_2$-based resistive switching structures. Nanotechnology 24, 85706.   DOI
22 Aoki Y, Wiemann C, Feyer V, Kim H S, Schneider C M, Ill-Yoo H, and Martin M (2014) Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour. Nat. Commun. 5, 3473.   DOI
23 Arita M, Ohno Y, and Takahashi Y (2016) Switching of Cu/MoOx/TiN CBRAM at MoOx/TiN interface. Phys. Status Solidi A 213, 306-310.   DOI
24 Avizienis A V, Sillin H O, Martin-Olmos C, Shieh H H, Aono M, Stieg A Z, and Gimzewski J K (2012) Neuromorphic atomic switch networks. PLoS One 7, e42772.   DOI
25 Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F, and Tsai M J (2008) Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92, 22110.   DOI
26 Chanthbouala A, Garcia V, Cherifi R O, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur N D, Bibes M, Barthelemy A, and Grollier J (2012) A ferroelectric memristor. Nat. Mater. 11, 860-864.   DOI
27 Chen J Y, Hsin C L, Huang C W, Chiu C H, Huang Y T, Lin S J, Wu W W, and Chen L J (2013) Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 13, 3671-3677.   DOI
28 Choi S J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J, and Kim K (2011) In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Adv. Mater. 23, 3272-3277.   DOI
29 Chen J Y, Huang C W, Chiu C H, Huang Y T, and Wu W W (2015) Switching kinetic of VCM-based memristor: evolution and positioning of nanofilament. Adv. Mater. 27, 5028-5033.   DOI
30 Chiang Y D, Chang W Y, Ho C Y, Chen C Y, Ho C H, Lin S J, Wu T B, and He J H (2011) Single-ZnO-nanowire memory. IEEE Trans. Electron Devices 58, 1735-1740.   DOI
31 Di Martino G, Tappertzhofen S, Hofmann S, and Baumberg J (2016) Nanoscale plasmon-enhanced spectroscopy in memristive switches. Small 12, 1334-1341.   DOI
32 Dirkmann S, Hansen M, Ziegler M, Kohlstedt H, and Mussenbrock T (2016) The role of ion transport phenomena in memristive double barrier devices. Sci. Rep. 6, 35686.   DOI
33 Egerton R F (2007) Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107, 575-586.   DOI
34 Egerton R F (2011) Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer Science & Business Media, New York).
35 Fan Z, Fan X, Li A, and Dong L (2013) In situ forming, characterization, and transduction of nanowire memristors. Nanoscale 5, 12310-12315.   DOI
36 Giannuzzi L A (2012) Routine backside FIB milling with EXpressLO. In: Proceedings from ISTFA 2012, pp. 388-390, (ASM International, Materials Park).
37 Giannuzzi L A and Stevie F A (1999) A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, 197-204.   DOI
38 Hammad Fawey M, Chakravadhanula V S K, Reddy M A, Rongeat C, Scherer T, Hahn H, Fichtner M, and Kubel C (2016) In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: preparation, prospects, and challenges. Microsc. Res. Tech. 79, 615-624.   DOI
39 Hansen M, Ziegler M, Kolberg L, Soni R, Dirkmann S, Mussenbrock T, and Kohlstedt H (2015) A double barrier memristive device. Sci. Rep. 5, 13753.   DOI
40 Hasegawa T, Terabe K, Tsuruoka T, and Aono M (2012) Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers. Adv. Mater. 24, 252-267.   DOI
41 Hirotsu Y, Ishimaru M, Ohkubo T, Hanada T, and Sugiyama M (2001) Application of nano-diffraction to local atomic distribution function analysis of amorphous materials. J. Electron Microsc. 50, 435-442.   DOI
42 Huang C H, Huang J S, Lin S M, Chang W Y, He J H, and Chueh Y L (2012) $ZnO_{1-x}$ nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 6, 8407-8414.   DOI
43 Huang Y T, Yu S Y, Hsin C L, Huang C W, Kang C F, Chu F H, Chen J Y, Hu J C, Chen L T, He J H, and Wu W W (2013) In situ TEM and energy dispersion spectrometer analysis of chemical composition change in ZnO nanowire resistive memories. Anal. Chem. 85, 3955-3960.   DOI
44 Ilari G M, Chawla V, Matam S, Zhang Y, Michler J, and Erni R (2016) Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs. Micron 84, 37-42.   DOI
45 Kang H J, Kim J H, Oh J W, Back T S, and Kim H J (2010) Ultra-thin TEM sample preparation with advanced backside FIB milling method. Microsc. Microanal. 16, 170-171.   DOI
46 Jang M H, Agarwal R, Nukala P, Choi D, Johnson A T C, Chen I W, and Agarwal R (2016) Observing oxygen vacancy driven electroforming in Pt-TiO2-Pt device via strong metal support interaction. Nano Lett. 16, 2139-2144.   DOI
47 Jeong H Y, Kim J Y, Kim J W, Hwang J O, Kim J E, Lee J Y, Yoon T H, Cho B J, Kim S O, Ruoff R S, and Choi S Y (2010) Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 10, 4381-4386.   DOI
48 Jeong H Y, Lee J Y, Choi S Y, and Kim J W (2009) Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 95, 162108.   DOI
49 Kato N I (2004) Reducing focused ion beam damage to transmission electron microscopy samples. J. Electron Microsc. 53, 451-458.   DOI
50 Kim K H, Gaba S, Wheeler D, Cruz-Albrecht J M, Hussain T, Srinivasa N, and Lu W (2012) A functional hybrid memristor crossbar-array/CMOS System for data storage and neuromorphic applications. Nano Lett. 12, 389-395.   DOI
51 Kim S, Park J, Jung S, Lee W, Woo J, Cho C, Siddik M, Shin J, Park S, Lee B H, and Hwang H (2011) Excellent resistive switching in nitrogendoped Ge2Sb2Te5 devices for field-programmable gate array configurations. Appl. Phys. Lett. 99, 192110.   DOI
52 Li Y, Zhong Y, Xu L, Zhang J, Xu X, Sun H, and Miao X (2013) Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 3, 1619.   DOI
53 Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M, and Hwang C S (2010) Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148-153.   DOI
54 Langford R M and Clinton C (2004) In situ lift-out using a FIB-SEM system. Micron 35, 607-611.   DOI
55 Lee A R, Baek G H, Kim T Y, Ko W B, Yang S M, Kim J, Im H S, and Hong J P (2016) Memory window engineering of Ta2O5-x oxide-based resistive switches via incorporation of various insulating frames. Sci. Rep. 6, 30333.   DOI
56 Liang K D, Huang C H, Lai C C, Huang J S, Tsai H W, Wang Y C, Shih Y C, Chang M T, Lo S C, and Chueh Y L (2014) Single CuOx nanowire memristor: forming-free resistive switching behavior. ACS Appl. Mater. Interfaces 6, 16537-16544.   DOI
57 Lin C Y, Lee D Y, Wang S Y, Lin C C, and Tseng T Y (2008) Effect of thermal treatment on resistive switching characteristics in Pt/Ti/$Al_2O_3$/Ptdevices. Surf. Coat. Technol. 203, 628-631.   DOI
58 Liu Q, Long S, Lv H, Wang W, Niu J, Huo Z, Chen J, and Liu M (2010) Controllable growth of nanoscale conductive filaments in solidelectrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 4, 6162-6168.   DOI
59 Lin L, Liu L, Musselman K, Zou G, Duley W W, and Zhou Y N (2016) Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory. Adv. Funct. Mater. 5979-5986.
60 Liu P H, Lin C C, Manekkathodi A, and Chen L J (2015) Multilevel resistance switching of individual Cu2S nanowires with inert electrodes. Nano Energy 15, 362-368.   DOI
61 Ohnishi H, Kondo Y, and Takayanagi K (1998) Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780-783.   DOI
62 Liu Q, Sun J, Lv H, Long S, Yin K, Wan N, Li Y, Sun L, and Liu M (2012) Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844-1849.   DOI
63 Mayer J, Giannuzzi L A, Kamino T, and Michael J (2007) TEM sample preparation and FIB-induced damage. MRS Bulletin 32, 400-407.   DOI
64 Munroe P R (2009) The application of focused ion beam microscopy in the material sciences. Mater. Charact. 60, 2-13.   DOI
65 Pena F, Ostasevicius T, Fauske V T, Burdet P, Jokubauskas P, Sarahan M, Johnstone D, Nord M, Taillon J, Caron J, MacArthur K E, Eljarrat A, Mazzucco S, Furnival T, Prestat E, Walls M, Donval G, Martineau B, Zagonel L F, Garmannslund A, Aarholt T, Gohlke C, and iygr (2016) hyperspy: HyperSpy 1.1.
66 Strachan J P, Yang J J, Montoro L A, Ospina C A, Ramirez A J, Kilcoyne A L D, Medeiros-Ribeiro G, and Williams R S (2013) Characterization of electroforming-free titanium dioxide memristors. Beilstein J. Nanotechnol. 4, 467-473.   DOI
67 Stoger-Pollach M, Franco H, Schattschneider P, Lazar S, Schaffer B, Grogger W, and Zandbergen H W (2006) Cerenkov losses: a limit for bandgap determination and Kramers-Kronig analysis. Micron 37, 396-402.   DOI
68 Stoger-Pollach M, and Schattschneider P (2007) The influence of relativistic energy losses on bandgap determination using valence EELS. Ultramicroscopy 107, 1178-1185.   DOI
69 Strachan J P, Pickett M D, Yang J J, Aloni S, David Kilcoyne A L, Medeiros-Ribeiro G, and Stanley Williams R (2010) Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573-3577.   DOI
70 Sun X, Yu B, Ng G, and Meyyappan M (2007) One-dimensional phasechange nanostructure: germanium telluride nanowire. J. Phys. Chem. C 111, 2421-2425.   DOI
71 Guo A, Li D, Li W, Gu D, Jiang X, and Jiang Y (2016) The relation of structure and dispersion to amorphous silicon silver thin films. Mater. Lett. 185, 5-8.   DOI
72 Ishitani T and Yaguchi T (1996) Cross-sectional sample preparation by ion beam: a review of ion-sample interaction. Microsc. Res. Tech. 35, 320-333.   DOI
73 Koo H J, So J H, Dickey M D, and Velev O D (2011) Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater. 23, 3559-3564.   DOI
74 Yao I C, Lee D Y, Tseng T Y, and Lin P (2012) Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices. Nanotechnology 23, 145201.   DOI
75 Zalden P, Shu M J, Chen F, Wu X, Zhu Y, Wen H, Johnston S, Shen Z X, Landreman P, Brongersma M, Fong S W, Wong H S P, Sher M J, Jost P, Kaes M, Salinga M, von Hoegen A, Wuttig M, and Lindenberg A M (2016) Picosecond electric-field-induced threshold switching in phase-change materials. Phys. Rev. Lett. 117, 67601.   DOI
76 Kimura M, Honda K, Yodogawa S, Ohtsuka K, Oo T N, Miyashita K, Hirata H, and Akahane T (2012) Flexible LCDs fabricated with a slit coater: not requiring an alignment film. J. Soc. Inf. Disp. 20, 633-639.   DOI