Browse > Article
http://dx.doi.org/10.9729/AM.2016.46.4.176

Light-Microscopy-Based Sparse Neural Circuit Reconstruction: Array Tomography and Other Methods  

Rah, Jong-Cheol (Korea Brain Research Institute, Laboratory of Neurophysiology)
Publication Information
Applied Microscopy / v.46, no.4, 2016 , pp. 176-178 More about this Journal
Abstract
Efficient neural circuit reconstruction requires sufficient lateral and axial resolution to resolve individual synapses and map a large enough volume of brain tissue to reveal the molecular identity and origin of these synapses. Sparse circuit reconstruction using array tomography meets many of these requirements but also has some limitations. In this minireview, the advantages and disadvantages of applicable imaging techniques will be discussed.
Keywords
Neural circuit reconstruction; Array tomography; Light microscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, and Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat. Meth. 8, 1047-1049.   DOI
2 Chen F, Tillberg P W, and Boyden E S (2015) Optical imaging. Expansion microscopy. Science 347, 543-548.   DOI
3 Chen F, Wassie A T, Cote A J, Sinha A, Alon S, Asano S, Daugharthy E R, Chang J B, Marblestone A, Church G M, Raj A, and Boyden E S (2016). Nanoscale imaging of RNA with expansion microscopy. Nature Methods 13, 679-684.   DOI
4 DeFelipe J, Marco P, Busturia I, and Merchan-Perez A (1999) Estimation of the number of synapses in the cerebral cortex: methodological considerations. Cerebral Cortex 9, 722-732.   DOI
5 Feinberg E H, VanHoven M K, Bendesky A, Wang G, Fetter R D, Shen K, and Bargmann C I (2008) GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353-363.   DOI
6 Graf E R, Zhang X, Jin S X, Linhoff M W, and Craig A M (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013-1026.   DOI
7 Lee W C A, Bonin V, Reed M, Graham B J, Hood G, Glattfelder K, and Reid R C (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532, 370-374.   DOI
8 Micheva K D, Busse B, Weiler N C, O'Rourke N, and Smith S J (2010) Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68, 639-653.   DOI
9 Micheva K D and Smith S J (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25-36.   DOI
10 Mikula S, Binding J, and Denk W (2012) Staining and embedding the whole mouse brain for electron microscopy. Nat. Meth. 9, 1198- 1201.   DOI
11 Mishchenko Y (2010) On optical detection of densely labeled synapses in neuropil and mapping connectivity with combinatorially multiplexed fluorescent synaptic markers. PLoS One 5, e8853.   DOI
12 Morgan J L, Berger D R, Wetzel A W, and Lichtman J W (2016) The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165, 192-206.   DOI
13 Nanguneri S, Flottmann B, Horstmann H, Heilemann M, and Kuner T (2012). Three-dimensional, tomographic super-resolution fluorescence imaging of serially sectioned thick samples. PLoS One 7, e38098.   DOI
14 Tomer R, Lovett-Barron M, Kauvar I, Andalman A, Burns V M, Sankaran S, Grosenick L, Broxton M, Yang S, and Deisseroth K (2015) SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163, 1796-1806.   DOI
15 Punge A, Rizzoli S O, Jahn R, Wildanger J D, Meyer L, Schonle A, Kastrup L, and Hell S W (2008) 3D reconstruction of high-resolution STED microscope images. Microsc. Res. Tech. 71, 644-650.   DOI
16 Rah J C (2013) Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography. Front. Neural Circuits 7, 177.
17 Scheiffele P, Fan J, Choih J, Fetter R, and Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657-669.   DOI
18 Shtengel G, Galbraith J A, Galbraith C G, Lippincott-Schwartz J, Gillette J M, Manley S, Sougrat R, Waterman C M, Kanchanawong P, Davidson M W, Fetter R D, and Hess H F (2009) Interferometric fluorescent superresolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. U.S.A. 106, 3125-3130.   DOI
19 Sigal Y M, Speer C M, Babcock H P, and Zhuang X (2015) Mapping synaptic input fields of neurons with super-resolution imaging. Cell 163, 493-505.   DOI
20 Bloss E B, Cembrowski M S, Karsh B, Colonell J, Fetter R D, and Spruston N (2016) Structured dendritic inhibition supports branch- selective integration in CA1 pyramidal cells. Neuron 89, 1016-1030.   DOI
21 Bock D D, Lee W C A, Kerlin A M, Andermann M L, Hood G, Wetzel A W, Yurgenson S, Soucy E R, Kim H S, and Reid R C (2011) Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177-182.   DOI
22 Briggman K L, Helmstaedter M, and Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183-188.   DOI
23 Kim J, Zhao T, Petralia R S, Yu Y, Peng H, Myers E, and Magee J C (2011) mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat. Meth. 9, 96-102.   DOI
24 Hayworth K J, Kasthuri N, Schalek R, and Lichtman J W (2006) Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc. Microanal. 12, 86-87.   DOI
25 Huang B, Wang W, Bates M, and Zhuang X (2008). Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810-813.   DOI