Recently various kinds of Information Technology services are created and the quantities of the data flow are increase rapidly. Not only that, but the data patterns that we deal with also slowly becoming diversity. As a result, the demand of discover the meaningful knowledge/information through the various mining analysis such as linkage analysis, sequencing analysis, classification and prediction, has been steadily increasing. However, solving the business problems using data mining analysis does not always concerning, one of the major causes of these limitations is there are some analyzed data can't accurately reflect the real world phenomenon. For example, although the time gap of purchasing the two products is very short, by using the traditional sequencing analysis, the precedence relationship of the two products is clearly reflected. But in the real world, with the very short time interval, the precedence relationship of the two purchases might not be defined. What was worse, the sequence of the purchase intention and the sequence of the purchase realization of the two products might be mutually be reversed. Therefore, in this study, an expanded sequencing analysis methodology has been proposed in order to reflect this situation. In this proposed methodology, the purchases that being made in a very short time interval among the purchase order which might not important will be notice, and the analysis which included the original sequence and reversed sequence will be used to extend the analysis of the data. Also, to some extent a very short time interval can be defined as the time interval, so an experiment were carried out to determine the varying based on the time interval for the actual data.