기동물체 추적을 위해서 GPS, INS, 레이더 및 광학장비 등의 다양한 위치추적 센서가 이용되고 있으며, 기동물체의 강인한 추적성능을 유지하기 위해 이기종 센서의 효과적인 융합방법이 필요하다. 이기종 다중센서를 이용한 추적성능 향상을 위해 센서의 서로 다른 오차특성을 고려하여 각 센서의 측정치를 상이한 모델로 간주하여 융합하는 연구가 수행되었지만, 한 센서의 오차가 급격히 증가하는 구간에서 다른 센서의 추정치에 대한 오차가 증가하고 각 센서의 측정값이 참 값일 확률인 Sensor Probability 값에 대해 센서 측정치 변화를 실시간으로 반영하지 못하였다. 본 논문에서는 각 센서 칼만필터의 갱신추정치와 측정치 간의 차이에 대한 RMSE(Root Mean Square Error)를 비교하여 Sensor Probability를 구하고, 결합추정치를 다시 각 센서 칼만필터 입력값으로 대입하는 과정을 제외하여 센서 측정치에 대한 실시간적인 반영과 센서 성능이 급격히 저하되는 구간에서의 추적성능을 개선한다. 제안하는 알고리즘은 각 센서의 오차특성을 조건부 확률값으로 추가하여 각 센서의 Sensor Probability에 따라 가장 양호한 성능을 보이는 센서 위주로 트랙융합을 함으로써 강인성을 보장 한다. 실험을 통해 UAV의 기동 경로를 생성하고 제안 알고리즘을 적용하여 다른 융합 알고리즘과 성능분석을 실시한다.