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Abstract DNA sequences are the fundamental information for each species and a comparison
between DNA sequences of different species is an important task. Since DNA sequences are very long
and there exist many species, not only fast matching but also efficient storage is an important factor
for DNA sequences. Thus, a fast string matching method suitable for encoded DNA sequences is
needed. In this paper, we present a fast string matching method for encoded DNA sequences which
does not decode DNA sequences while matching. We use four-characters—to—one-byte encoding and
combine a suffix approach and a multi-pattern matching approach. Experimental results show that our

method is about 5 times faster than AGREP and the fastest among known algorithms,
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string matching, encoded DNA sequences, multi-pattern matching

comparison between DNA sequences is an inter-
esting and basic problem. Since a DNA sequence is
A CT,
and G, the comparison problem is the same as a

represented by a sequence of four bases -

matching problem between strings. There are
various kinds of comparison tools and the famous
two are BLAST [1] and FASTA [2]. These tools
provide approximate matching. In fact, however,
they are based on exact matching to speed up.

The exact matching problem is to find all the
occurrences of a given pattern P in a large text 1,
where both 7 and £ are sequences of characters
from a finite alphabet 2. Many algorithms have
been developed for exact matching and they are
divided into three approaches [3): Prefix approach,
suffix approach, and factor approach. For the prefix
approach, there are the Knuth-Morris-Pratt (KMP)
algoritbm [4], the Shift-Or algorithm [5] and its

variants [6]. For the suffix approach, there are the
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Boyer-Moore (BM) algorithm [7) and its variants -
the Horspool algorithm (8], the Sunday algorithm
[9], and the hybrid algorithm [10]. For the factor
approach, there are the Backward Nondeterministic
Dawg Matching (BNDM) algorithm [11] and the
Backward Oracle Matching (BOM) algorithm [12].
In addition, there exists some results for small
alphabets [13-15]. Kim and Shawe-Taylor (KS)
and Tarhio and Peltola (TP) use g¢-gram for shifts
in [14] and [15], respectively. The approximate
AGREP [16,17], ‘has the

exact match routine which has been widely used.

pattern matching tool,

For more information, see [3].

A comparison between DNA sequences of dif-
ferent species is an important task. Since DNA
sequences are very long and there exist many
species, not only fast matching but also efficient
storage is an important factor for DNA sequences.
Thus, a fast string matching method suitable for
encoded DNA sequences is needed.

In fact, various encoded string matching algo-
rithms have been developed for general string mat-
ching after the compressed matching problem was
first defined by Amir and Benson [18]. Manber {19]
used an encoding method which compresses the
phrase of length 2 to one byte. However, the
problem of this method is that the pattern may
have more than one encoding. Moura et al. [20]
of the
Sunday algorithm with a semi-static word-based

proposed an algorithm which consists

modeling and a Huffman coding. It is 2 times
faster than AGREP. Amir, Benson, and Farach [21]
gave the first matching algorithm for Ziv-Lempel
encoded texts. Recently, for Ziv-Lempel encoding
method, Navarro and Raffinot [22] used the Shift-
Or algorithm, and Navarro and Tarhio [23] used
the BM algorithm. For byte pair encoding method,
Shibata et al. [24] used the Knuth-Morris-Pratt
algorithm and Shibata et al. [25] used the BM
algorithm. The algorithm in [24] is 2 times faster
than AGREP for GenBank data set with m <16
where m is the pattern length and the algornthm in
[25] is 3 times faster with m < 30.

Recently there have heen efforts to develop prac—
tical and fast string matching algorithms just for
DNA sequences [26,27]. The following algorithms

use a similar encoding method which is suitable for
small alphabet. Fredriksson [26] used an encoded
character called a super—-alphabet. A super-alphabet
of size ¢' is defined as packing s symbols of text
7 to a single super-symbol where o is the size of
the alphabet. Fredriksson’s Shift-Or algorithm with
a super-alphabet of size 4 =956 is 5 times faster
than the original Shift-Or algorithm with DNA
and Ram [27] used the
each DNA base is
encoded to two-bit code and thus four bases can

sequences. Chen, Lu,

following encoding method:

be considered at a time. Chen, Lu, and Ram's
d-BM algorithm makes four encoded patterns and
then does matching using BM for each encoded
pattern. It is faster than AGREP with m >350.

In this paper, we present a fast string matx;hing
method for encoded DNA sequences. Our method
uses encoded texts for matching and does not
decode them. We use four—characters-to-one-byte
encoding and combine a suffix approach and a
multi-pattern matching approach, i.e., a combination
of a multi-pattern version of the Sunday algorithm
and a simplified version of the Commentz-Walter
algorithm [28,29]. Through this combination, we get
the most efficient string matching method for
encoded DNA sequences. We implement various
algorithms and compare with our method. Expe—
rimental results show that our method is about 5
times faster then AGREP and the fastest string
matching method for encoded DNA sequences

among known algorithms.

2. Preliminaries

We first give some definitions and notations that
will be used in this paper. Let ¥ be an alphabet
and o be the size of £. A string is corncatenations
of zero or more characters from alphabet . The
length of a string S is denoted by ISl Let S
denote ith character of a string S for 1<i<|8l
and Sli..j] denote a substring SliSlE+1]-- S5l of S
for 1< |8l

let 7 be a text string of length » and P be a
pattern string of length m. The string matching
problem is defined as follows: Given a text 7 and

a pattern P, find all occurrences of F in 7.
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In this paper, we consider DNA sequences. There

are four characters, A, C, T, and G, ie, X={A, C,
T, G} and thus ¢=4. The problem we consider in
this paper is as follows.
Problem 1. Let 1 be a text, P be a pattern and
T be an encoded text of 7. Given T and P, find
all occurrences of P in the original text 7 without
decoding 7.

There are various encoding methods: Ziv-Lempel,
Huffman, BPE, etc. If an encoding method & such
that Ela)=a for ¢€X% is used, then 7'=7 and
Problem 1 is the same as the string matching
problem.

3. Proposed Method

We want to solve Problem 1 for DNA sequences
as fast as possible. To do this, we will propose an
algorithm that uses the following methods:
* Encoding method A fixed-length

method.

* Matching method

encoding

A suffix approach and a
multi-pattern matching approach.

We first explain the encoding method of our
algorithm, and then explain the matching method of
our algorithm.

3.1 Encoding

We use a fixed-length encoding method. Since
Z={A, C, T, G}, ie,

bits for each character. Thus we can define a

oc=4, we need only two

mapping M-

M(A) =00, MC)=01,
MT) =10, MG)=11.

Since there are eight bits in one byte, we can
encode four characters to one byte. Given a sub-
string Sli-i+3], we define an encoding method £
such that

E(Sli..i+3])) = M(S[s]) 1| MSTa+1]) 1l
M(S[i+2]) | aSTi+3))

where | is the concatenation operator. Then, the

size ¢’ of the encoded alphabet is 4' = 256.

We explain text encoding and pattern encoding.

3.1.1 Text Encoding

Given a text 7, an encoded text 7' is defined as
(T.,,T,, Mask,;] where 7, is an encoded byte se-
quence of length [n/41 —1, 1, is the last encoded
byte and Mask; is a bit mask for 7.

The encoded byte sequence 7, is defined as

T, li] = E(T{4i—3..4i])

for 1<i<n and n = [n/4] —1. The last encoded

byte 7; is defined as

L
-- 100
where r=n—4n’, 1 <7 <4. The bit mask Mask,

4
T=MTanw +1)) | - | A T{4n’ +7]) 1001 -

is defined as
T 4—-r

Masky =111 --- 1111100 I --- 1 00.
3.1.2 Pattern Encoding

Given a pattern P, we make four encoded pat-

terns. Since we will match an encoded text and an
encoded pattern, using only one encoded pattern we
cannot find all occurrences but only some positions
such that their positions modulo 4 are all the same.
Thus we need four encoded patterns such that the
possible occurrence positions of them modulo 4 are
0, 1, 2 and 3, respectively.

An encoded pattern P’ for 0 <4 <3 is defined as
[P;,P;,Eiymk;7m/ﬁ] where P, is an encoded
byte sequence of length [ (n+i)/4]1 —2, P and P
are the first and last encoded bytes and Msk} and
Mask, are bit masks for P} and P}, respectively.

The encoded byte sequence P is defined as

P[] = B(Pl4j+1—i.45+4—1])
for 1<j<m; and m; = [(n+i)/4] —2. The first

encoded byte Pf’ is defined as

Pp=001 - 100 I M(P) I - 1 M(P4—i])
where 0 <i<3. The bit mask Msk} is defined as

Table 1 Four encoded patterns for P=ATCAACGAGAGATC

i P} P, P} Mask; Mask)

0 00100100 00011100 11001100 10010000 11111111 11110000
1 00001001 00000111 00110011 00100100 00111111 11111100
2 00000010 01000001 11001100 11001001 00001111 11111111
3 00000000 10010000 01110011 00110010 01000000 00000011 11000000
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i 4—4

Mask, =001 -~ 1001 I11 -~ T11.

And the last encoded byte & is defined as
Pi= MP4alm, +1)—i+1]) | -

4-r
Il M(P4(m, +1)—i++]) 100 - 1100
where r=m~4(m,+1)—i, 1 <r <4. The bit mask

Mask is defined as
T 4—r

Mask, =111 --- 11111001 -~ I 00

Note that P} and Pf are non—empty bytes.

For example, given a pattern P=
ATCAACGAGAGATC, four encoded patterns are
shown in Table 1.

3.2 Matching

We combine a suffix approach and a multi-
pattern matching approach, i.e., a combination of a
multi-pattern version of the Sunday algorithm and
a simplified version of the Commentz-Walter algo-
rithm. After the encoding stage, we have one
encoded text 7 and four encoded patterns P! for
0<4<3. Since we do not decode 7' while mat~
ching, we must use four encoded patterns. Thus, to
get the most efficient performance for matching 7
with four encoded patterns P, we adopt a multi~
pattern matching approach. For each encoded
pattern, we adopt a Boyer-Moore approach which
the best

matching algorithms.

shows results among known string

The matching stage consists of two phases:
preprocessing phase and searching phase. We first
explain the preprocessing phase, and then explain
the searching phase.

3.2.1 Preprocessing

In the preprocessing phase, we make a shift table
A for encoded patterns. The role of the shift table
A is to find the nearest candidate position for the
next occurrence of any one of four encoded pat-
terns at any position.

We make a shift table 4 via two steps. First,
we compute a shift candidate table d' for each
encoded pattern P°. The shift candidate table d' is
in fact a shift table for one pattern matching. We
use the method that there must be at least one

byte shift at any time [9). For each # , we

compute d' using P, such that

d'lo) =min{m, + Lmin{m, + 1 -kl P [k] =, 1 <k<m}}

where o is an encoded character, 0 < a < 255,

Then, we compute a shift table A from d. Since
each d' means the minimum offset for the next
candidate position of P!, we choose the minimum
of d' to find the next candidate position of four
encoded patterns, i.e.,

Ale] =min{d[a]l0 < i< 3}.

In addition, we make an index list for each
encoded character a. When o appears in the last
position of 7, ie, P [m]=c, i is inserted in the
index list for a. Using this, we can search for only
the encoded patterns that F,, ends with o,

3.2.2 Searching

In the searching phase, we find all occurrences of
four encoded patterns in an encoded text. The
searching phase is divided into two parts: match
part and shift part. Figure 1 shows a pseudocode
for the searching phase.

In the match part, we match each character of
encoded patterns and the encoded text. Let ¢ be a
pointer to the encoded text Z,. When the index
list for the character of 7),(i] contains some

entries, we try to match 7, and encoded patterns

which are indicated by the index list. Since the

while i < n'
for 7 in the index list of T[]
kei—1, jem,—1
while j >0 and T,,[k] = P[[j]
ke—k—1 jej—1
end while
if =0
ifi<n’
it Pf= T,lk] & Mask} and P/ = T,[i+ 1] & Mask]
pattern occurs at position 4¥k— (3—1r)
end if
end if
else if Py=T, [k:]&]l/[ask} and P} = T,&Mask]

// match part

m
pattern occurs at position 4¥k— (3—7)

end if
end if
end if
do // shift part
i—i+ A[T,[i+1]]
while 4 < n’ and A[T,[i]] =1
end while

Fig. 1 Pseudocode for searching phase
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first and last characters of the encoded patterns
have their bit masks, a text character is masked by
using the bit mask of the pattern. If we find a
match, output the match position at the original
text. After that, we start the shift part.

In the shift part, we move a pointer ¢ from left
to right via a shift table A as far as possible. At
first, i is shifted by Ali+1] [9]. Then, if the
encoded text character at the shifted position 7 has
shift again. This
guarantees that at least one shift occurs at each

no entry in its index list,
iteration. Lemma 1 shows the correctness of our
algorithm.

Lemma 1. Using a shift table A, we can find
every candidate position for four encoded patterns.
Proof. Let ¢ be the current position of the encoded

text 7, and let o be the encoded character at the
position i+1 of T),. There are four values d[o] for
0<i<3 and, WLOG, let Alel=d"[e]. Suppose

that an encoded pattern P, is matched at

i+d'le]—m,+1 of 7, and Ald <d'l[al.

m

Then to
prove this lemma, it is sufficient to show that the
i+d o).
current position is now updated to i+Ala], the
next shift added to i+A4le is Alg]
B=T,li+Ale]+1]. occurs  at

current position comes to Since the

where

1
Because P,

it+d (o] —m, +1, we get
8= Py lm, —(d o] — Ala]) +1]. Thus,
d'[8l <d'la]—Ale] and Al8] <d'[8]. Therefore

Al +ABl <d'lo] and i+ Ala)+AB] <it+do].

Since A is larger than 1, after repeating the above

step, the current position comes to it+d [a],
eventually.

3.3 Analysis

The worst case time complexity is O(n'km’),

where n’ is the length of the encoded text T, m’
is the maximum of the lengths of four encoded
pattern an and k£ is 4, and the best case time
complexity is O(n'/m +m'occ), where occ is the

number of all occurrences of the pattern in the text.

4. Experimental Results

We had experiments with our algorithm FED

(fast matching with encoded DNA sequences) and
the following algorithms: BM (Boyer-Moore) [7],
Horspool [8], Sunday [9], AGREP [16,17], TP
(Tarhio and Peltola) [15], TPO8 (a new variant of
TP for DNA) [30], KS (Kim and Shawe-Taylor)
[14], BOM Matching) [12],
BNDM (backward nondeterministic dawg matching)
[11], BB (BM on byte pair encoding) [25], SASO
(super-alphabet shift-or) [26], and d-BM [27]. BB
is the compressed pattern matching algorithm on
byte—pair encoding and SASQO, d-BM and FED are
the compressed pattern matching algorithms on

(Backward Oracle

fix-length encoding. Others are the original pattern
matching algorithms.

We implemented all algorithms by ourselves,
except AGREP, BOM, and BNDM. All the algo-
rithms had been implemented in C, compiled with
gce 4.3.2. We ran the experiments in 2.4GHz Intel
Core2 Quad CPU with 8 GB RAM, running GNU/
Linux 2.6.27.12.

We had experiments on ten real DNA sequence
data sets from NCBI: The sizes of data sets are
varied from 7.6MB to 220MB. For each data set,
the patterns were randomly extracted from the
texts, and each test was repeated 50 times. Since
the experimental results are similar, we show
typical two examples: Mus Musculus fragments set
(220MB) and Homo sapiens chromosome 1 long
sequence (210MB). We report the average time in
milliseconds which includes the pattern encoding,
preprocessing and searching times. Figures 2-5
shows the experimental results.

1000

time (msac)

10 2‘0 C;O 4\0 50 8‘0
pattern length (bytes}
Fig. 2 Running time for Mus Musculus fragment set

with the pattern length between 12 and 64
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500 1000 1500 2000

Fig. 3 Running time for Mus Musculus fragment set
with the pattern length between 64 and 2016

time (msec)

pattern tength (bytes)
Fig. 4 Running time for Homo sapiens chromosome 1
with the pattern length between 12 and 64

time (msec)

0 I n L "
500 1000 1500 2000
patter length (bytes)

Fig. 5 Running time for Homo sapiens chromosome 1
with the pattern length between 64 and 2016

The proposed algorithm FED is faster than all
the others from short patterns to long patterns.
Figures 2 and 4 show the running times for short

patterns whose lengths are from 12 to 64. FED is
2~5 times faster than AGREP and 2~3.5 times
faster than TP. In addition, FED is at least 3 times
faster than BNDM. A recent algorithm FAQSO
(fast average optimal shift or) in [6] is reported
about 2 times faster than BNDM on DNA se-
quences, and thus FED is still faster than FAQOSO.
Figures 3 and 5 show the running times for long
patterns whose lengths are from 64 to 2016. FED
is 5 times faster than AGREP and 25~5 times
faster than TP. As the lengths of patterns get
larger, BOM nears FED but FED is still faster
than BOM even with pattern length 4000.

5. Conclusions

We have presented a string matching algorithm
suitable for encoded DNA sequences and shown
that our algorithm is the fastest among known
algorithms. In addition, since the matching process
is done with the encoded text as it is, we can save

the time and space overhead for decoding.
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