Because of energy crisis and environment pollution, we have become more conscious of the need to conserve heat in buildings. In response to this need. new requirements have been developed for insulation and other matters relating to energy consumption. Among others, more promising is to use the energy that is all around us in the dynamic forces of nature:the wind, tides, waves, rivers, geothermal hot spots, and the sun. The problem is that we have not been forced to find the technological means to convert these natural energies into usable forms because it has been too easy simply to dig or pump our energy out of the ground. Now, the problem is not a shortage of energy itself, but a shortage of technology for converting the energy that lies aoo around us into usable forms. Energy-conversion technology is the real issue, and solar energy is one of the brightest and most promising frontiers in energy conversion. All buildings are wrapped in a skin. Generally skins protect the person in stay from rain, wind, dust, noise, cold, hot etc.. However, there are some skins that provide energy from given environment into the building. Out of aoo, transparent insulation material is one of these materials that most effectively satisfies this kind of envelope function. Since, there are no research on transparent insulation in Korea, it has been studied very actively in Europe and in America. Thus, in this thesis, we will theoratically study and analyze how the heat flows through a trans arrent insulated opaque wall of a school building in Korea. It will be an important information for the effective using guidelines of transparent insulation materials in Korea.