Kwak, Hae-Ryun;Kim, Mi-Kyeong;Lee, Ye-Ji;Seo, Jang-Kyun;Kim, Jeong-Soo;Kim, Kook-Hyung;Cha, Byeongjin;Choi, Hong-Soo
397
The full-genome sequences of fourteen isolates of Broad bean wilt virus 2 (BBWV2), collected from broad bean, pea, spinach, bell pepper and paprika plants in Korea during the years 2006-2012, were determined and analyzed comparatively along with fifteen previously reported BBWV2 genome sequences. Sequence analyses showed that RNA-1 and RNA-2 sequences of BBWV2 Korean isolates consisted of 5950-5956 and 3568-3604 nucleotides, respectively. Full-length genome sequence-based phylogenetic analyses revealed that the BBWV2 Korean isolates could be divided into three major groups comprising GS-I (isolates BB2 and RP7) along with isolate IP, GS-II (isolates BB5, P2, P3 and RP3) along with isolate B935, and GS-III including 16 BBWV2 Korean isolates. Interestingly, GS-III appears to be newly emerged and predominant in Korea. Recombination analyses identified two recombination events in the analyzed BBWV2 population: one in the RNA-1 of isolate K and another one in the RNA-2 of isolate XJ14-3. However, no recombination events were detected in the other 21 Korean isolates. On the other hand, out of 29 BBWV2 isolates, 16 isolates were found to be re-assortants, of which each RNA segment (i.e. RNA1 and RNA2) was originated from different parental isolates. Our findings suggested that reassortment rather than recombination is a major evolutionary force in the genetic diversification of BBWV population in Korea.