Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.07.2013.0067

Altered Gene Expression and Intracellular Changes of the Viable But Nonculturable State in Ralstonia solanacearum by Copper Treatment  

Um, Hae Young (Department of Medical Bioscience, Dong-A University)
Kong, Hyun Gi (Department of Applied Biology, Dong-A University)
Lee, Hyoung Ju (Department of Applied Biology, Dong-A University)
Choi, Hye Kyung (Department of Medical Bioscience, Dong-A University)
Park, Eun Jin (Department of Applied Biology, Dong-A University)
Kim, Sun Tae (Department of Plant Bioscience, Pusan National University)
Murugiyan, Senthilkumar (Department of Applied Biology, Dong-A University)
Chung, Eunsook (Department of Medical Bioscience, Dong-A University)
Kang, Kyu Young (Division of Applied Life Science, Gyeongsang National University)
Lee, Seon-Woo (Department of Medical Bioscience, Dong-A University)
Publication Information
The Plant Pathology Journal / v.29, no.4, 2013 , pp. 374-385 More about this Journal
Abstract
Environmental stresses induce several plant pathogenic bacteria into a viable but nonculturable (VBNC) state, but the basis for VBNC is largely uncharacterized. We investigated the physiology and morphology of the copper-induced VBNC state in the plant pathogen Ralstonia solanacearum in liquid microcosm. Supplementation of $200{\mu}M$ copper sulfate to the liquid microcosm completely suppressed bacterial colony formation on culture media; however, LIVE/DEAD BacLight bacterial viability staining showed that the bacterial cells maintained viability, and that the viable cells contain higher level of DNA. Based on electron microscopic observations, the bacterial cells in the VBNC state were unchanged in size, but heavily aggregated and surrounded by an unknown extracellular material. Cellular ribosome contents, however, were less, resulting in a reduction of the total RNA in VBNC cells. Proteome comparison and reverse transcription PCR analysis showed that the Dps protein production was up-regulated at the transcriptional level and that 2 catalases/peroxidases were present at lower level in VBNC cells. Cell aggregation and elevated levels of Dps protein are typical oxidative stress responses. $H_2O_2$ levels also increased in VBNC cells, which could result if catalase/peroxidase levels are reduced. Some of phenotypic changes in VBNC cells of R. solanacearum could be an oxidative stress response due to $H_2O_2$ accumulation. This report is the first of the distinct phenotypic changes in cells of R. solanacearum in the VBNC state.
Keywords
copper; dps; oxidative stress; Ralstonia solanacearum; viable but nonculturable (VBNC) state;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Alexander, E., Pham, D. and Steck, T. R. 1999. The viable-butnonculturable conditions is induced by copper in Agrobacterium tumefaciens and Rhizobium leguminosarum. Appl. Environ. Microbiol. 65:3754-3756.
2 Almiron, M., Link, A., Furlong, D. and Kolter, R. 1992. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 6:2646-2654.   DOI   ScienceOn
3 Alvarez, B., Lopez, M. M. and Biosca, E. G. 2008. Survival strategies and pathogenicity of Ralstonia solanacearum phylotype II subjected to prolonged starvation in environmental water microcosms. Microbiology 154:3590-3598.   DOI   ScienceOn
4 Blat, Y. and Eisenbach, M. 1995. Tar-dependent and -independent pattern formation by Salmonella typhimurium. J. Bacteriol. 177:1683-1691.   DOI
5 Boucher, C. A., Barberis, P., Trigalet, A. P. and Demery, D. A. 1985. Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. J. Gen. Microbiol. 131:2449-2457.
6 Boulos, L., Prevost, M., Barbeau, B., Coallier, J. and Desjardins, R. 1999. $LIVE/DEAD^{(R)}$ BacLightTM: application of a new rapid staining method for direct enumeration of viable ad total bacteria in drinking water. J. Microbiol. Meth. 37:77-86.   DOI   ScienceOn
7 Brumbley, S. M. and T. P. Denny. 1990. Cloning of wild-type Pseudomonas solanacearum phcA, a gene that when mutated alters expression of multiple traits that contribute to virulence. J. Bacteriol. 172:5677-5685.   DOI
8 Budrene, E. O. and Berg, H. C. 1991. Complex patterns formed by motile cells of Escherichia coli. Nature 349:630-633.   DOI   ScienceOn
9 Caruso, P., Palomo, J. L., Bertolini, E., Alvarez, B., Lopez, M. M. and Biosca, E. G. 2005. Seasonal variation of Ralstonia solanacearum biovar 2 populations in a Spanish river; recovery of stressed cells at low temperature. Appl. Environ. Microbiol. 71:140-148.   DOI   ScienceOn
10 Colburn-Clifford, J. M., Scherf, J. M. and Allen, C. 2010. Ralstonia solanacearum Dps contributes to oxidative stress tolerance and to colonization of and virulence on tomato plants. Appl. Environ. Microbiol. 76:7392-7399.   DOI   ScienceOn
11 Grey, B. and Steck, T. R. 2001. The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appl. Environ. Microbiol. 67:3866-3872.   DOI   ScienceOn
12 Coutinho, T. A. 2005. Introduction and prospectus on the survival of R. solanacearum, p. 29-38. In C. Allen, P. Prior and A. C. Hayward, eds., Bacterial wilt disease and the Ralstonia solanacearum species complex. APS press, St. Paul, MN.
13 Ghezzi, J. I. and Steck, J. M. 1999. Induction of the viable but non-culturable condition in Xanthomonas campestris pv. campestris in liquid microcosms and sterile soil. FEMS Microbiol. Ecol. 30:203-208.   DOI
14 Grant, R. A., Filman, D. J., Finkel, S. E., Kolter, R. and Hogle, J. M. 1998. The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nature Struct. Biol. 5:294-303.   DOI   ScienceOn
15 Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87.   DOI   ScienceOn
16 Holmgren, G. G. S., Meyer, M., Chaney, R. and Daniels, R. 1993. Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. J. Environ. Qual. 22:335-348.
17 Imazaki, I. and Nakaho, K. 2009. Temperature-upshift-mediated revival from the sodium-pyruvate-recoverable viable but nonculturable state induced by low temperature in Ralstonia solanacearum: linear regression analysis. J. Gen. Plant Pathol. 75:213-226.   DOI
18 Jeong, Y., Kim, J., Kang, Y., Lee, S. and Hwang, I. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91:1277-1287.   DOI   ScienceOn
19 Kell, D., Kaprelyants, A., Weichart, D., Harwood, C. and Barer, M. 1998. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Leeuwenhoek. 73:169-187.   DOI   ScienceOn
20 Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693-695.
21 Kelman, A. 1956. Survival of Pseudomonas solanacearum in water. Phytopathology 46:16-17.
22 Kim, S. T., Kim, S. G., Kang, Y. H., Wang, Y., Kim, J.-Y., Yi, N., Kim, J.-K., Rakwal, R., Koh, J.-K. and Kang, K. Y. 2008. Proteomics analysis of rice lesion mimic mutant (spl1) reveals tightly localized probenazole-induced protein (PBZ1) in cells undergoing programmed cell death. J. Proteome Res. 7:1750-1760.   DOI   ScienceOn
23 Kim, Y. H., Kim, K. S. and Riggs, R. D. 2012. Initial subcellular responses of susceptible and resistant soybeans infected with the soybean cyst nematode. Plant Pathol. J. 28:401-408.   과학기술학회마을   DOI   ScienceOn
24 Kogure, K., Simidu, U. and Taga, N. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25:415-420.   DOI   ScienceOn
25 Kong, I.-S., Bates, T. C., Hulsmann, A., Hassan, H. and Oliver, J. D. 2004. Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 50:133-142.   DOI   ScienceOn
26 Lahtinen, S. J., Ahokoski, H., Reinikainen, J. P., Gueimonde, M., Nurmi, J., Ouwehand, A. C. and Salminen, S. J. 2008. Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria. Lett. Appl. Microbiol. 46:693-698.   DOI   ScienceOn
27 Lee, Y. H., Choi, C. W., Kim, S. H., Yun, J. G., Chang, S. W., Kim, Y. S. and Hong, J. K. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28:32-39.   과학기술학회마을   DOI   ScienceOn
28 Mergaert, P., Uchiumi, T., Alunni, B., Evanno, G., Cheron, A., Catrice, O., Mausset, A. E., Barloy-Hubler, F., Galibert, F., Kondorosi, A. and Kondorosi, E. 2006. Eukaryotic control of bacterial cell cycle and differentiation in the Rhizobiumlegume symbiosis. Proc. Natl. Acad. Sci. USA 103:5230-5235.   DOI   ScienceOn
29 Loreto, F. and Velikova, V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quences ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127:1781-1787.   DOI   ScienceOn
30 Martinez, A. and Kolter, R. 1997. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J. Bacteriol. 179:5188-5194.   DOI
31 Michelsen, O., Hansen, F. G., Albrechtsen, B. and Jensen, P. R. 2010. The MG1363 and IL1403 laboratory strains of Lactococcus lactis and several dairy strains are diploid. J. Bacteriol. 192:1058-1065.   DOI   ScienceOn
32 Mizunoe, Y., Wai, S. N., Takade, A. and Yoshida, S. 1999. Restoration of culturability of starvation-stressed Escherichia coli O157 cells by using $H_2O_2$-degrading compounds. Arch. Microbiol. 172:63-67.   DOI
33 Oliver, J. D. 2010. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 34:415-425.   DOI
34 Ordax, M., Marco-Noales, E., Lopez, M. M. and Biosca, E. G. 2006. Survival strategy of Erwinia amylovora against copper:induction of the viable-but-nonculturable state. Appl. Environ. Microbiol. 72:3482-3488.   DOI   ScienceOn
35 Potter, M., Muller, H., Reinecke, F., Wieczorek, R., Fricke, F., Bowien, B., Friedrich, B. and Steinbuchel, A. 2004. The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology 150:2301-2311.   DOI   ScienceOn
36 Saumaa, S., Tover, A., Tark, M., Tegova, R. and Kivisaar, M. 2007. Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida. J. Bacteriol. 189:5504-5514.   DOI   ScienceOn
37 Rodriguez, G. G., Phipps, D., Ishiguro, K. and Ridgway, H. F. 1992. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58:1801-1808.
38 Saddler, G. S. 2005. Management of bacterial wilt disease, p.121-132. In C. Allen, P. Prior and A. C. Hayward, eds., Bacterial wilt disease and the Ralstonia solanacearum species complex. APS press, St. Paul, MN.
39 Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., Billault, A., Brottier, P., Camus, J. C., Cattolico, L., Chandler, M., Choisne, N., Claudel-Renard, C., Cunnac, S., Demange, N., Gaspin, C., Lavie, M., Moisan, A., Robert, C., Saurin, W., Schiex, T., Siguier, P., Thebault, P., Whalen, M., Wincker, P., Levy, M., Weissenbach, J. and Boucher, C. A. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497-502.   DOI   ScienceOn
40 Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory guide for identification of plant pathogenic bacteria, 3rd ed., APS press, St. Paul, MN.
41 Shapiro, J. A. 1988. Bacteria as multicellular organisms. Sci. Am. 258:62-69.
42 Tobiason, D. M. and Seifert, H. S. 2010. Genomic content of Neisseria species. J. Bacteriol. 192:2160-2168.   DOI   ScienceOn
43 van Elsas, J. D., Kastelein, P., de Vries, P. M. and van Overbeek, L. S. 2001. Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Can. J. Microbiol. 47:842-854.   DOI   ScienceOn
44 van Elsas, J. D., Kastelein, P., van Bekkum, P., van der Wolf, J. M., de Vries, P. M. and van Overbeek, L. S. 2000. Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology 90:1358-1366.   DOI   ScienceOn
45 Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H. and Nishiuchi, Y. Y. 1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol. Immunol. 39:897-904.   DOI
46 Xu, H., Roberts, N., Singleton, F. L., Attwell, R. W., Grimes, D. J. and Colwell, R. R. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholera in the estuarine and marine environment. Microb. Ecol. 8:313-323.   DOI   ScienceOn