Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.03.2013.0036

Molecular Characterization and Variation of the Broad bean wilt virus 2 Isolates Based on Analyses of Complete Genome Sequences  

Kwak, Hae-Ryun (Crop Protection Division, National Academy of Agricultural Science)
Kim, Mi-Kyeong (Crop Protection Division, National Academy of Agricultural Science)
Lee, Ye-Ji (Crop Protection Division, National Academy of Agricultural Science)
Seo, Jang-Kyun (Crop Protection Division, National Academy of Agricultural Science)
Kim, Jeong-Soo (Crop Protection Division, National Academy of Agricultural Science)
Kim, Kook-Hyung (Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University)
Cha, Byeongjin (Department of Plant Medicine, Chungbuk National University)
Choi, Hong-Soo (Crop Protection Division, National Academy of Agricultural Science)
Publication Information
The Plant Pathology Journal / v.29, no.4, 2013 , pp. 397-409 More about this Journal
Abstract
The full-genome sequences of fourteen isolates of Broad bean wilt virus 2 (BBWV2), collected from broad bean, pea, spinach, bell pepper and paprika plants in Korea during the years 2006-2012, were determined and analyzed comparatively along with fifteen previously reported BBWV2 genome sequences. Sequence analyses showed that RNA-1 and RNA-2 sequences of BBWV2 Korean isolates consisted of 5950-5956 and 3568-3604 nucleotides, respectively. Full-length genome sequence-based phylogenetic analyses revealed that the BBWV2 Korean isolates could be divided into three major groups comprising GS-I (isolates BB2 and RP7) along with isolate IP, GS-II (isolates BB5, P2, P3 and RP3) along with isolate B935, and GS-III including 16 BBWV2 Korean isolates. Interestingly, GS-III appears to be newly emerged and predominant in Korea. Recombination analyses identified two recombination events in the analyzed BBWV2 population: one in the RNA-1 of isolate K and another one in the RNA-2 of isolate XJ14-3. However, no recombination events were detected in the other 21 Korean isolates. On the other hand, out of 29 BBWV2 isolates, 16 isolates were found to be re-assortants, of which each RNA segment (i.e. RNA1 and RNA2) was originated from different parental isolates. Our findings suggested that reassortment rather than recombination is a major evolutionary force in the genetic diversification of BBWV population in Korea.
Keywords
BBWV2; phylogenetic analyses; recombination; reassortment;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kobayashi, Y. O., Nakano, M., Kashiwazaki, S., Naito, T., Mokoshiba, Y., Shiota, A., Kameya-Iwaki, M. and Honda, Y. 1999. Sequence analysis of RNA-2 of different isolates of broad bean wilt virus confirms the existence of two distinct species. Arch. Virol. 144:1429-1438.   DOI   ScienceOn
2 Allison, R. F., Janda, M. and Ahlquist, P. 1989. Sequence of cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during bromovirus evolution. Virology 172:321-330.   DOI   ScienceOn
3 Benner, C. P., Kuhn, C. W., Demski, J. W., Dobson, J. W., Colditz, P. and Nutter, F. W., Jr. 1985. Identification and incidence of pepper viruses in Northeastern Georgia. Plant Dis. 69:999-1001.
4 Boulila, M. 2007. Phylogeny and genetic recombination of Grapevine fanleaf virus isolated from naturally infected vineyards in Tunisia. Phytopathol. Mediterr. 46:285-294.
5 Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J. and Watson, L. 1996. Viruses of Plants. Descriptions and Lists from the VIDE Database. CAB International, Wallingford, UK.
6 Chang, M. U. and Chung, J. D. 1987. Studies on viruses isolated from Lilium spp. in Korea. Plant Pathol. J. 3:223-235.   과학기술학회마을
7 Cho, J. D., Kim, J. S., Lee, S. H., Choi, G. S. and Chung, B. N. 2007. Viruses and symptoms on peppers and their infection types in Korea. Res. Plant Dis. 13:75-81 (in Korean).   과학기술학회마을   DOI   ScienceOn
8 Choi, H. S., Cho, J. D., Lee, K. H. and Kim, J. S. 2001. Broad bean wilt fabaviruses and their specific ultrastructures. Kor. J. Electron Microscopy 31:215-222.   과학기술학회마을
9 Ferrer, R., Ferriol, I., Gueri, J., Moreno, P. and Rubio, L. 2011. Genetic variation and evolutionary analysis of Broad bean wilt virus 2. Arch. Virol. 156:1445-1450.   DOI
10 Fraile, A., Alonso-Prados, J. L., Aranda, M. A., Bernal, J. J., Malpica, J. M. and Garcia-Arenal, F. 1997. Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J. Virol. 71:934-940.
11 Garcia-Arenal, F., Fraile, A. and Malpica, J. M. 2001. Variability and genetic structure of plant virus populations. Annu. Rev. Phytopathol. 39:157-186.   DOI   ScienceOn
12 Gibbs, M. J., Armstrong, J. S. and Gibbs, A. J. 2000. Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573-582.   DOI
13 Goldbach, R., Martelli, G. P. and Milne, R. G. 1995. Family Comoviridae. In: Virus taxonomy. Classification and nomenclature of viruses. Sixth report of the International Committee on Taxonomy of Viruses, ed. by F. A. Murphy, C. M. Fauquet, D. H. L. Bishop, S. A. Ghabrial, A. W. Jarvis, G. P. Martelli, M. A. Mayo and M. D. Summers, pp 341-347. Springer, Wien New York, (Arch Virol [Suppl] 10).
14 Gu, H. and Ghabrial, S. A. 2005. The Bean pod mottle virus proteinase cofactor and putative helicase are symptom severity determinants. Virology 333:271-283.   DOI   ScienceOn
15 Hahm, Y. I., Kwon, M., Kim, J. S., Seo H. W. and Ahn, J. H. 1998. Serveys on disease occurrence in major horticultural crops in Kangwon Alpine areas. Plant Pathol. J. 14:668-675.
16 Ikegami, M., Kawashima, H., Natsuaki, T. and Sugimura, N. 1998. Complete nucleotide sequence of the genome organization of RNA2 of Patchouli mild mosaic virus, a new fabavirus. Arch. Virol. 143:2431-2434.   DOI   ScienceOn
17 Kobayashi, Y. O., Nakano, M., Kashiwazaki, S., Naito, T., Mikoshiba, Y., Shiota, A., Kameya-Iwaki, M. and Honda, Y. 1999. Sequence analysis of RNA-2 of different isolates of broad bean wilt virus confirms the existence of two distinct species. Arch. Virol. 144:1429-1438.   DOI   ScienceOn
18 Ikegami, M., Onobori, Y., Sugimura, N. and Natsuaki, T. 2001. Complete nucleotide sequence and the genome organization of Patchouli mild mosaic virus RNA1. Intervirology 44:355-358.   DOI   ScienceOn
19 Jonson, M. G., Seo, J. K., Choi, H. S., Kim, J. S. and Kim, K. H. 2009. Effects of Recombination on the pathogenicity and evolution of Pepper mottle virus. Plant Pathol. J. 25:417-421.   과학기술학회마을   DOI   ScienceOn
20 Kobayashi, Y. O., Mikoshiba, Y., Honda, Y. and Omura, T. 2004. Detection of Broad bean wilt virus 1 and Broad bean wilt virus 2 in Japan. Ann. Rept. Kanto Plant Prot. Soc. 51:43-48.
21 Kobayashi, Y. O., Kobayashi, A., Nakano, M., Hagiwara, K., Honda, Y. and Omura, T. 2003. Analysis of genetic relations between Broad bean wilt virus 1 and Broad bean wilt virus 2. J. Gen. Plant Pathol. 69:320-326.   DOI
22 Koh, L. H., Cooper, J. I. and Wong, S. M. 2001. Complete sequences and phylogenetic analyses of a Singapore isolate of Broad bean wilt fabavirus. Arch. Virol. 146:135-147.   DOI
23 Kondo, T., Fuji, S., Yamashita, K., Kang, D. K. and Chang, M. U. 2005. Broad bean wilt virus 2 in yams. J. Gen. Plant Pathol. 71:441-443.   DOI
24 Kuroda, T., Okumura, A., Takeda, L., Miura, Y. and Suzuki, K. 2000. Nucleotide sequence and synthesis of infectious RNA from cloned cDNA of Broad bean wilt virus 2 RNA 2. Arch. Virol. 145:787-793.   DOI
25 Kwak, H. R., Kim, M. K., Nam, M., Kim, J. S., Kim, K. H., Cha, B. and Choi, H. S. 2013. Genetic compositions of Broad bean wilt virus 2 infecting red pepper in Korea. Plant Pathology J. (in press).   과학기술학회마을   DOI   ScienceOn
26 Lisa, V. and Boccardo, G. 1996. Fabaviruses: broad bean wilt and allied viruses. In: The plant viruses, vol. 5: Polyhedral virions and bipartite RNA genomes, ed. by B. D. Harrison and A. F. Murant, pp. 229-250. Plenum Press, New York.
27 Lee, U., Hong, J. S., Choi, J. K., Kim, K. C., Kim, Y. S., Curtis, I. S., Nam, H. G. and Lim, P. O. 2000. Broad bean wilt virus causes necrotic symptoms and generates defective RNAs in Capsicum annuum. Phytopathology 90:1390-1395.   DOI   ScienceOn
28 Lee, S. H., Lee, K. W. and Chung, B. J. 1979. Investigations on the virus diseases in spinach (Spinacia oleracea L.) 2. Identification of Broad bean wilt virus occuring spinach. Kor. J. Plant Port. 18:11-14.
29 Le Gall, O., Candresse, T. and Dunez, J. 1995. Transfer of the 39 non-translated region of grapevine chrome mosaic virus RNA-1 by recombination to tomato black ring virus RNA-2 in pseudorecombinant isolates. J. Gen. Virol. 76:1285-1289.   DOI   ScienceOn
30 Nakamura, S., Iwai, T. and Honkura, R. 1998. Complete nucleotide sequence and genome organization of Broad bean wilt virus 2. Ann. Phytopathol. Soc. Jpn. 64:565-568.   DOI
31 Park, I. S., Kim, K. W., Kyun, H. J. and Chang, M. U. 1998. The viruses in gladiolus hybridus cultivated in Korea 2. Broad bean wilt virus, Cucumber mosaic virus and Tobacco rattle virus. Plant Pathol. J. 14:83-91.   과학기술학회마을
32 Qi, Y., Zhou, X. and Li, D. 2000a. Complete nucleotide sequence and infectious cDNA clone of the RNA1 of a Chinese isolate of Broad bean wilt virus 2. Virus Genes 20:201-207.   DOI   ScienceOn
33 Qi, Y., Zhou, X., Xue, C. and Li, D. 2000b. Nucleotide sequence of RNA2 and polyprotein processing sites of a Chinese isolate of Broad bean wilt virus 2. Prog. Nat. Sci. 10:680-686.
34 Roh, S. H. and Chang, M. U. 1998. Three viruses isolated from Gentiana spp. in Korea. Plant Pathol. J. 14:425-432.   과학기술학회마을
35 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739.   DOI   ScienceOn
36 Ryu, J. G., Ko, S. J., Lee, Y. H., Kim M. K., Kim K. H., Kim H. T. and Choi, H. S. 2009. Incidence and distribution of virus disease on paprika (Capsicum annuum var. grossum) in Jeonnam province of Korea. Plant Pathol. J. 25:95-98.   DOI   ScienceOn
37 Seo, J. K., Ohshima, K., Lee, H. G., Son, M., Choi, H. S., Lee, S. H., Sohn, S. H. and Kim, K. H. 2009. Molecular variability and genetic structure of the population of Soybean mosaic virus based on the analysis of complete genome sequences. Virology 393:91-103.   DOI   ScienceOn
38 Sui, C., Wei, J. H., Zhan, Q. Q. and Zhang, J. 2009. First report of Broad bean wilt virus 2 infecting Bupleurum chinense in China. Plant Dis. 93:844.
39 Taylor, R. H. and Stubbs, L. L. 1972. Broad bean wilt virus. Page 81 in: Description of Plant Viruses. Commonw. Mycol. Inst./Assoc. Appl. Biol., Warwick, U.K.
40 Uyemoto, K. J. and Provvidenti, R. 1974. Isolation and identification of two serotypes of Broad bean wilt virus. Phytopathology 64:1547-1548.   DOI
41 Watterson, J. C. 1993. Development and breeding of resistance to pepper and tomato viruses. In: Resistance to Viral Diseases of Vegetables, ed. by M. M. Kyle, pp. 80-101.Timber Press, Portland OR.
42 Worobey, M. and Holmes, E. C. 1999. Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 80:2535-2543.   DOI
43 Zhang, C., Gu, H. and Ghabrial, S. A. 2007. Molecular characterization of naturally occurring RNA1 recombinants of the Comovirus Bean pod mottle virus. Phytopathology 97:1255-1262.   DOI   ScienceOn