Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.07.2013.0069

Nitric Oxide and Hydrogen Peroxide Production are Involved in Systemic Drought Tolerance Induced by 2R,3R-Butanediol in Arabidopsis thaliana  

Cho, Song-Mi (Department of Floriculture, Chunnam Techno University)
Kim, Yong Hwan (Korea Institute of Planning & Evaluation for Technology on Food, Agriculture, Forestry & Fisheries)
Anderson, Anne J. (Department of Biology, Utah State University)
Kim, Young Cheol (Institute of Environmental-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Publication Information
The Plant Pathology Journal / v.29, no.4, 2013 , pp. 427-434 More about this Journal
Abstract
2R,3R-Butanediol, a volatile compound produced by certain rhizobacteria, is involved in induced drought tolerance in Arabidopsis thaliana through mechanisms involving stomatal closure. In this study, we examined the involvement of nitric oxide and hydrogen peroxide in induced drought tolerance, because these are signaling agents in drought stress responses mediated by abscisic acid (ABA). Fluorescence-based assays showed that systemic nitric oxide and hydrogen peroxide production was induced by 2R,3R-butanediol and correlated with expression of genes encoding nitrate reductase and nitric oxide synthase. Co-treatment of 2R,3R-butanediol with an inhibitor of nitrate reductase or an inhibitor of nitric oxide synthase lowered nitric oxide production and lessened induced drought tolerance. Increases in hydrogen peroxide were negated by co-treatment of 2R,3R-butanediol with inhibitors of NADPH oxidase, or peroxidase. These findings support the volatile 2R,3R-butanediol synthesized by certain rhizobacteria is an active player in induction of drought tolerance through mechanisms involving nitric oxide and hydrogen peroxide production.
Keywords
abscisic acid; induced drought tolerance; nitric oxide; reactive oxygen; volatiles;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Anderson, J. P., Badruzsufari, E., Schnek, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., Maclean, D. J., Ebert, P. R. and Kazan, K. 2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460-3479.   DOI   ScienceOn
2 Bae, H., Sicher, R. C., Kim, M. S., Kim, S.-H., Strem, M. D., Melnick, R. L. and Bailey, B. A. 2009. The beneficial endophyte Trichoderma hamatum isolate DIS219b promotes growth and delays the onset of the drought response in Theobroma cacao. J. Exp. Bot. 60: 3279-3295.   DOI   ScienceOn
3 Bright, J., Desikan, R., Hancock, J. T., Weir, I. S. and Neil, S. J. 2006. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on $H_2O_2$ synthesis. Plant J. 45:113-122.   DOI   ScienceOn
4 Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., Cho, B. H., Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:1067-1075.   DOI   ScienceOn
5 Cho, S. M., Kang, B. R., Kim, J. J. and Kim, Y. C. 2012. Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. Plant Pathol. J. 28:202−206.   과학기술학회마을   DOI   ScienceOn
6 Cho, S. M., Kang, B. R. and Kim, Y. C. 2013. Transcriptome analysis of induced systemic drought tolerance elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana. Plant Pathol. J. 29:209−220.   과학기술학회마을   DOI   ScienceOn
7 Cho, S. M., Kim, S. H., Kim, Y. C., Yang, K. Y., Kim, K. S., Choi, Y. S. and Cho, B. H. 2010. Galactinol is involved in induced systemic resistance against bacterial infection and environmental stresses. Kor. J. Plant Res. 23:248-255.   과학기술학회마을
8 Cho, S. M., Park, J. Y., Han, S. H., Anderson, A. J., Yang, K. Y., Gardener, B. M. and Kim, Y. C. 2011. Identification and transcriptional analysis of priming genes in Arabidopsis thaliana induced by root colonization with Pseudomonas chlororaphis O6. Plant Pathol. J. 27:272-279.   과학기술학회마을   DOI   ScienceOn
9 Desikan, R., Last, K., Harret-Williams, R., Tagliavia, C., Harter, K., Hooley, R., Hancock, J. T. and Neil, S. J. 2006. Ethyleneinduced stomatal closure in Arabidopsis occurs via atrbohFmediated hydrogen peroxide synthesis. Plant J. 47:907-917.   DOI   ScienceOn
10 Figueiredo, M. V. B., Burity, H., Martinez, C. R. and Chanway, C. P. 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Eco. 40:182-188.   DOI   ScienceOn
11 Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. H., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. GacS-dependent production of 2R,3Rbutanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19:924-930.   DOI   ScienceOn
12 Kim, Y. C., Glick, B. R., Bashan, Y. and Ryu, C.-M. 2012. Enhancement of plant drought tolerance by microbes. Aroca, R. (ed.), Plant responses to drought stress, Springer-Verlag, Berlin, Heidelberg, pp 383-413.
13 Mayak, S., Tirosh, T. and Glick, B. R. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166:525-530.   DOI   ScienceOn
14 Kumar, A. S., Lakshmanan, V., Caplan, J. L., Powell, D., Czymmek, K. J., Levia, D. F. and Bais, H. P. 2012. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J. 72:694-706.   DOI   ScienceOn
15 Lee, S. C. and Luan, S. 2012. ABA signal transduction pathway at the crossroad of biotic and abiotic stress response. Plant Cell Environ. 35:53-60.   DOI   ScienceOn
16 Leung, J. and Giraudat, J. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:199-222.   DOI   ScienceOn
17 Mattson, M. P. 2008. Hormesis defined. Ageing Res Rev. 7:1-7.   DOI   ScienceOn
18 Melloto, M., Underwood, W., Koczan, J., Nomura, K. and He, S. H. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969-980.   DOI   ScienceOn
19 Mori, I. C., Pinontoan, R., Kawano, T. and Muto, S. 2001. Involvement of superoxide generation in salicylic acidinduced stomatal closure in Vicia faba. Plant Cell Physiol. 42:1383-1388.   DOI   ScienceOn
20 Mosher, S., Moeder, W., Nishimura, N., Kikumaru, Y., Joo, S.-H., Urquhart, W., Klessig, D. F., Kim, S.-K., Nambara, E. and Yoshioka, K. 2010. The lesion-mimic mutant cpr22 shows alterations in abscisic acid signaling and abscisic acid insensitivity in a salicylic acid-depedent manner. Plant Physiol. 152:1901-1913.   DOI   ScienceOn
21 Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 15:473-497.   DOI
22 Neill, S., Barros, R., Bright, J., Desikan, R., Hancock, J., Harrision, J., Morris, P., Ribeiro, D. and Wilson, I. 2008. Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 59:165-176.   DOI   ScienceOn
23 Timmusk, S. and Wagner, E. G. H. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact. 12:951-959.   DOI   ScienceOn
24 Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Soc. USA. 100:4927-4932.   DOI   ScienceOn
25 Schroeder, J. I., Kwak, J. M. and Allen, G. J. 2001. Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature 410:327-330.   DOI   ScienceOn
26 Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3:217-223.   DOI   ScienceOn
27 Underwood, W., Melloto, M. and He, S. H. 2007. Role of plant stomata in bacterial invasion. Cell Microbiol. 9:1621-1629.   DOI   ScienceOn
28 Wetzker, R. and Rubio, I. 2012. Hormetic signaling patterns. Dose-Response 10:83-90.   DOI   ScienceOn
29 Yang, J., Kloepper, J. W. and Ryu, C.-M. 2010. Rhizosphere bacteria help plants tolerance abiotic stress. Trends Plant Sci. 46:1-3.
30 Zhang, H., Murzello, C., Sun, Y., Kim, M.-S., Xie, X., Jeter, R. M., Zak, J. C., Dowd, S. E. and Pare, P. W. 2010. Choline and osmotic-stress tolerance induced in Arabiodosis by the soil microbe Bacillus subtilis (GB03). Mol. Plant-Microbe Interact. 23:1097-1104.   DOI   ScienceOn