Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.04.2013.0043

Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants  

Hong, Jeum Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Kang, Su Ran (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Kim, Yeon Hwa (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Yoon, Dong June (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Kim, Do Hoon (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Kim, Hyeon Ji (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Sung, Chang Hyun (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Kang, Han Sol (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Choi, Chang Won (Department of Biology and Medical Science, Paichai University)
Kim, Seong Hwan (Department of Microbiology and Institute of Basic Sciences, Dankook University)
Kim, Young Shik (Department of Plant Science and Food Biotechnology, Sangmyung University)
Publication Information
The Plant Pathology Journal / v.29, no.4, 2013 , pp. 386-396 More about this Journal
Abstract
Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide ($H_2O_2$) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion ($O_2{^-}$) and $H_2O_2$ was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of $H_2O_2$ and sodium nitroprusside (SNP) nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both $H_2O_2$ and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by $10^6$ and $10^7$ cfu/ml of R. solanacearum. $H_2O_2$- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative 'area under the disease progressive curve (AUDPC)' was calculated to compare disease protection by $H_2O_2$ and/or SNP with untreated control. Neither $H_2O_2$ nor SNP protect the tomato seedlings from the bacterial wilt, but $H_2O_2$ + SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that $H_2O_2$ and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.
Keywords
antibacterial agents; hydrogen peroxide; nitric oxide; Ralstonia solanacearum; tomato bacterial wilt;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Lugtenberg, B. J. J., Kravchenko, L. V. and Simons, M. 1999. Tomato seed and root exudates sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1:439-446.   DOI   ScienceOn
2 Macarisin, D., Cohen, L., Eick, A., Rafael, G., Belausov, E., Wisniewski, M. and Droby, S. 2007. Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit. Phytopathology 97:1491-1500.   DOI   ScienceOn
3 Macho, A. P., Guidot, A., Barberis, P., Beuzon, C. R. and Genin, S. 2010. A competitive index assay identifies several Ralstonia solanacearum type III effectors mutant strains with reduced fitness in host plants. Mol. Plant-Microbe Interact. 23:1197-1205.   DOI   ScienceOn
4 Mandal, S., Das, R. K. and Mishra, S. 2011. Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physiol. Biochem. 49:117-123.   DOI   ScienceOn
5 Nakaune, M., Tsukazawa, K., Uga, H., Asamizu, E., Imanishi, S., Matsukura, C. and Ezura, H. 2012. Low sodium chloride priming increases seedling vigor and stress tolerance to Ralstonia solanacearum in tomato. Plant Biotechnol. 29:9-18.   DOI
6 Nguyen, M. T. and Ranamukhaarachichi, S. L. 2010. Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J. Plant Pathol. 92:395-406.
7 Pacelli, R., Wink, D. A., Cook, J. A., Krishna, M. C., DeGraff, W., Friedman, N., Tsokos, M., Samuni, A. and Mitchell, J. B. 1995. Nitric oxide potentiates hydrogen peroxide-induced killing of Escherichia coli. J. Exp. Med. 182:1469-1479.   DOI   ScienceOn
8 Park, K., Paul, D., Kim, Y. K., Nam, K. W., Lee, Y. K., Choi, H. W. and Lee, S. Y. 2007. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol. J. 23:22-25.   과학기술학회마을   DOI   ScienceOn
9 Peng, M. and Ku , J. 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82:696−699.   DOI
10 Pieterse, C. M. J., Leon-Reyes, A., van der Ent, S. and van Wees, S. C. M. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308-316.   DOI   ScienceOn
11 Saile, E., McGarvey, J. A., Schell, M. A. and Denny, T. P. 1997. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87:1264-1271.   DOI   ScienceOn
12 Schell, M. A. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol. 38:263-292.   DOI   ScienceOn
13 Thordal-Christensen, H., Zhang, Z., Wei, Y. and Collinge, D. B. 1997. Subcellular localization of $H_2O_2$ in plants: $H_2O_2$ accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11:1187-1194.   DOI   ScienceOn
14 Valls, M., Genin, S. and Boucher, C. 2006. Integrated regulation of the type III secretion system and other virulence determi-nants in Ralstonia solanacearum. PLoS Pathog. 2:e82.   DOI   ScienceOn
15 van Loon, L. C., Rep, M. and Pieterse, C. M. J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162.   DOI   ScienceOn
16 Wang, C.-F., Huang, L.-L., Buchenauer, H., Han, Q.-M., Zhang, H.-C. and Kang, Z.-S. 2007. Histochemical studies on the accumulation of reactive oxygen species ($O_2^-$ and $H_2O_2$) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol. Mol. Plant Pathol. 71:230-239.   DOI   ScienceOn
17 Boccara, M., Mills, C. E., Zeier, J., Anzi, C., Lamb, C., Poole, R. K. and Delledonne, M. 2005. Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects plant hypersensitive reaction by intercepting nitric oxide produced by the host. Plant J. 43:226-237.   DOI   ScienceOn
18 Wang, Y.-S. and Yang, Z.-M. 2005. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L.. Plant Cell Physiol. 46:1915-1923.   DOI   ScienceOn
19 Wang, Y., Yang, Q., Tosa, Y., Nakayashiki, H. and Mayama, S. 2005. Nitric oxide-overproducing transformants of Pseudomonas fluorescens with enhanced biocontrol of tomato bacterial wilt. J. Gen. Plant Pathol. 71:33-38.   DOI
20 Anith, K. N., Momol, M. T., Kloepper, J. W., Marios, J. J., Olson, S. M. and Jones, J. B. 2004. Efficacy of plant growth-promoting rhizocbacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis. 88:669-673.   DOI   ScienceOn
21 Bournonville, C. F. G. and Diaz-Ricci, J. C. 2011. Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochem. Anal. 22:268-271.   DOI   ScienceOn
22 Brandes, N., Rinck, A., Leichert, L. I. and Jakob, U. 2007. Nitrosative stress treatment of E. coli targets distinct set of thiolcontaining proteins. Mol. Microbiol. 66:901-914.   DOI   ScienceOn
23 Brown, D. G. and Allen, C. 2004. Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt. Mol. Microbiol. 53:1641-1660.   DOI   ScienceOn
24 Byun, H.-J. and Choi, S.-J. 2004. Hydrogen peroxide induces resistance against anthracnose in cucumber (Cucumis sativus). J. Kor. Soc. Hort. Sci. 45:21-26.   과학기술학회마을
25 Colburn-Clifford, J. M., Scherf, J. M. and Allen, C. 2010. Ralstonia solanacearum Dps contributes to oxidative stress tolerance and to colonization of and virulence on tomato plants. Appl. Environ. Microbiol. 76:7392-7399.   DOI   ScienceOn
26 Cerioni, L., Rapisarda, V. A., Hilal, M., Prado, F. E. and Rodriguez-Montelongo, L. 2009. Synergistic antifungal activity of sodium hypochlorite, hydrogen peroxide, and cupric sulfate against Penicillium digitatum. J. Food Protect. 72:1660-1665.   DOI
27 Choi, H. W., Kim, Y. J., Lee, S. C., Hong, J. K. and Hwang, B. K. 2007. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol. 145:890-904.   DOI   ScienceOn
28 Chun, H. J., Park, H. C., Koo, S. C., Lee, J. H., Park, C. Y., Choi, M. S., Kang, C. H., Baek, D., Cheong, Y. H., Yun, D.-J., Chung, W. S., Cho, M. J. and Kim, M. C. 2012. Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Mol. Cells 34:463-471.   DOI
29 Deepak, S., Shailasree, S., Kini, R. K., Muck, A., Mithofer, A. and Shetty, S. H. 2010. Hydroxyproline-rich proteins and plant defence. J. Phytopathol. 158:585-593.
30 Deighton, N., Muckenschnabel, I., Goodman, B. A. and Williamson, B. 1999. Lipid peroxidation and the oxidative burst associated with infection of Capsicum annuum by Botrytis cinerea. Plant J. 20:485-492.   DOI   ScienceOn
31 El-Mougy, N. S., El-Gamal, N. G. and Abdalla, M. A. 2008. The use of fungicide alternatives for controlling postharvest decay of strawberry and orange fruits. J. Plant Protect. Res. 48:385-395.
32 Enfinger, J. M., McCarter, S. M. and Jaworski, C. A. 1979. Evaluation of chemicals and application methods for control of bacterial wilt of tomato transplants. Phytopathology 69:637-640.   DOI
33 Fu, L.-J., Shi, K., Gu, M., Zhou, Y.-H., Dong, D.-K., Liang, W.-S., Song, F.-M. and Yu, J.-Q. 2010. Systemic induction and role of mitochondrial alternative oxidase and nitric oxide in a compatible tomato-Tobacco mosaic virus interaction. Mol. Plant-Microbe Interact. 23:39-48.   DOI   ScienceOn
34 Flores-Cruz, Z. and Allen, C. 2009. Ralstonia solanacearum encounters an oxidative environment during tomato infection. Mol. Plant-Microbe Interact. 22:773-782.   DOI   ScienceOn
35 Flores-Cruz, Z. and Allen, C. 2011. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum. Appl. Environ. Microbiol. 77:6426-6432.   DOI   ScienceOn
36 Franks, A., Mark-Byrne, G. L., Dow, J. M. and O'Gara, F. 2008. A putative RNA-binding protein has a role in virulence in Ralstonia solanacearum GMI1000. Mol. Plant Pathol. 9:67-72.
37 Genin, S. 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol. 187:920-928.   DOI   ScienceOn
38 Gou, M., Block, A., Bryan, C. D., Becker, D. F. and Alfano, J. R. 2012. Pseudomonas syringae catalases are collectively required for plant pathogenesis. J. Bacteriol. 194:5054-5056.   DOI   ScienceOn
39 Guo, P., Cao, Y. , Li, Z. and Zhao, B. 2004. Role of endogenous nitric oxide burst in the resistance of wheat to stripe rust. Plant Cell Environ. 27:473-477.   DOI   ScienceOn
40 Grant, M and Lamb, C. 2006. Systemic immunity. Curr. Opin. Plant Biol. 9:414-420.   DOI   ScienceOn
41 Greenberg, J. T. and Yao, N. 2004. The role and regulation of programmed cell death in plant-pathogen interactions. Cell. Microbiol. 6:201-211.   DOI   ScienceOn
42 Hafez, Y. M., Bacso, R., Kiraly, Z., Kunstler, A. and Kiraly, L. 2012. Up-regulation of antioxidants in tobacco by low concentrations of $H_2O_2$ suppresses necrotic disease symptoms. Phytopathology 102:848-856.   DOI   ScienceOn
43 Jalloul, A., Montillet, J. L., Assigbetse, K., Agnel, J. P., Delannoy, E., Triantaphylides, C., Daniel, J. F., Marmey, P., Geiger, J. P. and Nicole, M. 2002. Lipid peroxidation in cotton: Xanthomonas interactions and the role of lipoxygenases during the hypersensitive reaction. Plant J. 32:1-12.   DOI   ScienceOn
44 Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87.   DOI   ScienceOn
45 Huang, K., Czymmek, K. J., Caplan, J. L., Sweigard, J. A. and Donofrio, N. M. 2011. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog. 7:e1001335.   DOI   ScienceOn
46 Ishikawa, R., Fujimori, K. and Matsuura, K. 1996. Antibacterial activity of validamycin A against Pseudomonas solanacearum and its efficacy against tomato bacterial wilt. Ann. Phytopathol. Soc. Jpn. 62:478-482.   DOI
47 Ji, P., Momol, M. T., Olson, S. M., Pradhanang, P. M. and Jones, J. B. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 89:497-500.   DOI   ScienceOn
48 Jittawuttipoka, T., Buranajitpakorn, S., Vattanaviboon, P. and Mongkolsuk, S. 2009. The catalase-peroxidase KatG is required for virulence of Xanthomonas campestris pv. campestris in a host plant by providing protection against low levels of $H_2O_2$. J. Bacteriol. 191:7372-7377.   DOI   ScienceOn
49 Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N. and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant-Microbe Interact. 19:250-256.   DOI   ScienceOn
50 Koornneef, A. and Pieterse, C. M. J. 2008. Cross talk in defense signaling. Plant Physiol. 146:839-844.   DOI   ScienceOn
51 Larsen, B. and White, S. 1995. Antifungal effect of hydrogen peroxide on catalase-producing strains of Candida spp.. Infect. Dis. Obstet. Gynecol. 3:73-78.   DOI
52 Kotchoni, O. S., Torimiro, N. and Gachomo, E. W. 2007. Control of Xanthomonas campestris pv. vignicola in cowpea following seed and seedling treatment with hydrogen peroxide and Nheterocyclic pyridinium chlorochromate. J. Plant Pathol. 89:361-367.
53 Lai, T., Wang, Y., Li, B., Qin, G and Tian, S. 2011. Defense responses to tomato fruit to exogenous nitric oxide during postharvest storage. Postharvest Biol. Technol. 62:127-132.   DOI   ScienceOn
54 Lamb, C. and Dixon, R. A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251-275.   DOI   ScienceOn
55 Lazar, E. E., Wills, R. B. H., Ho, B. T., Harris, A. M. and Spohr, L. J. 2008. Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicllium italicum. Lett. Appl. Microbiol. 46:688-692.   DOI   ScienceOn
56 Lee, Y. H., Choi, C. W., Kim, S. H., Yun, J. G., Chang, S. W., Kim, Y. S. and Hong, J. K. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28:32-39.   과학기술학회마을   DOI   ScienceOn
57 Liu, P.-P., von Dahl, C. C., Park, S.-W. and Klessig, D. F. 2011. Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol. 155:1762-1768.   DOI   ScienceOn
58 Loprasert, S., Vattanaviboon, P., Praituan, W., Chamnongpol, S. and Mongkolsuk, S. 1996. Regulation of the oxidative stress protective enzymes, catalase and superoxide dismutase in Xanthomonas - A review. Gene 179:33-37.   DOI   ScienceOn