Let $\zeta$ be a fixed complex number. In this paper, we study the quantity $S(\zeta,\;n):=mas_{f{\in}{\Lambda}_n}\;|f(\zeta)|$, where ${\Lambda}_n$ is the set of all real polynomials of degree at most n-1 with coefficients in the interval [0, 1]. We first show how, in principle, for any given ${\zeta}\;{\in}\;{\mathbb{C}}$ and $n\;{\in}\;{\mathbb{N}}$, the quantity S($\zeta$, n) can be calculated. Then we compute the limit $lim_{n{\rightarrow}{\infty}}\;S(\zeta,\;n)/n$ for every ${\zeta}\;{\in}\;{\mathbb{C}}$ of modulus 1. It is equal to 1/$\pi$ if $\zeta$ is not a root of unity. If $\zeta\;=\;\exp(2{\pi}ik/d)$, where $d\;{\in}\;{\mathbb{N}}$ and k $\in$ [1, d-1] is an integer satisfying gcd(k, d) = 1, then the answer depends on the parity of d. More precisely, the limit is 1, 1/(d sin($\pi$/d)) and 1/(2d sin($\pi$/2d)) for d = 1, d even and d > 1 odd, respectively.