Browse > Article
http://dx.doi.org/10.4134/JKMS.2009.46.1.187

ON THE MEAN VALUES OF DEDEKIND SUMS AND HARDY SUMS  

Liu, Huaning (DEPARTMENT OF MATHEMATICS NORTHWEST UNIVERSITY)
Publication Information
Journal of the Korean Mathematical Society / v.46, no.1, 2009 , pp. 187-213 More about this Journal
Abstract
For a positive integer k and an arbitrary integer h, the classical Dedekind sums s(h,k) is defined by $$S(h,\;k)=\sum\limits_{j=1}^k\(\(\frac{j}{k}\)\)\(\(\frac{hj}{k}\)\),$$ where $$((x))=\{{x-[x]-\frac{1}{2},\;if\;x\;is\;not\;an\;integer; \atop \;0,\;\;\;\;\;\;\;\;\;\;if\;x\;is\;an\;integer.}\$$ J. B. Conrey et al proved that $$\sum\limits_{{h=1}\atop {(h,k)=1}}^k\;s^{2m}(h,\;k)=fm(k)\;\(\frac{k}{12}\)^{2m}+O\(\(k^{\frac{9}{5}}+k^{{2m-1}+\frac{1}{m+1}}\)\;\log^3k\).$$ For $m\;{\geq}\;2$, C. Jia reduced the error terms to $O(k^{2m-1})$. While for m = 1, W. Zhang showed $$\sum\limits_{{h=1}\atop {(h,k)=1}}^k\;s^2(h,\;k)=\frac{5}{144}k{\phi}(k)\prod_{p^{\alpha}{\parallel}k}\[\frac{\(1+\frac{1}{p}\)^2-\frac{1}{p^{3\alpha+1}}}{1+\frac{1}{p}+\frac{1}{p^2}}\]\;+\;O\(k\;{\exp}\;\(\frac{4{\log}k}{\log\log{k}}\)\).$$. In this paper we give some formulae on the mean value of the Dedekind sums and and Hardy sums, and generalize the above results.
Keywords
Dedekind sums; Hardy sums; mean value; asymptotic formula;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. Dedekind, Erlauterungen zu der Riemannschen Fragmenten uber die Grenzfalle der elliptischen Funktionen, Gesammelte Math. Werke 1, Braunschweig, 1930, 159-173.
2 G. H. Hardy and E. M.Wright, An Introduction to the Theory of Numbers, Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979.
3 C. Jia, On the mean value of Dedekind sums, J. Number Theory 87 (2001), no. 2, 173-188.   DOI   ScienceOn
4 H. Liu and W. Zhang, On the even power mean of a sum analogous to Dedekind sums, Acta Math. Hungar. 106 (2005), no. 1-2, 67-81.   DOI
5 M. R. Pettet and R. Sitaramachandrarao, Three-term relations for Hardy sums, J. Num- ber Theory 25 (1987), no. 3, 328-339.   DOI
6 B. C. Berndt, A new proof of the reciprocity theorem for Dedekind sums, Elem. Math. 29 (1974), 93-94.
7 B. C. Berndt, Dedekind sums and a paper of G. H. Hardy, J. London Math. Soc. (2) 13 (1976), no. 1, 129-137.   DOI
8 W. Zhang, On the mean values of Dedekind sums, J. Theor. Nombres Bordeaux 8 (1996), no. 2, 429-442.   DOI
9 W. Zhang, A note on the mean square value of the Dedekind sums, Acta Math. Hungar. 86 (2000), no. 4, 275-289.   DOI
10 W. Zhang, A sum analogous to the Dedekind sum and its mean value formula J. Number Theory 89 (2001), no. 1, 1-13.   DOI   ScienceOn
11 H. Walum, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), no. 1, 1-3.
12 U. Dieter, Cotangent sums, a further generalization of Dedekind sums, J. Number The- ory 18 (1984), no. 3, 289-305.   DOI
13 R. R. Hall and M. N. Huxley, Dedekind sums and continued fractions, Acta Arith. 63 (1993), no. 1, 79-90.
14 J. Pommersheim, Toric varieties, lattice points and Dedekind sums, Math. Ann. 295 (1993), no. 1, 1-24.   DOI
15 H. Rademacher and E. Grosswald, Dedekind sums, The Carus Mathematical Mono- graphs, No. 16. The Mathematical Association of America, Washington, D.C., 1972.
16 R. Sitaramachandrarao, Dedekind and Hardy sums, Acta Arith. 48 (1987), no. 4, 325-340.
17 B. C. Berndt and L. A. Goldberg, Analytic properties of arithmetic sums arising in the theory of the classical theta functions, SIAM J. Math. Anal. 15 (1984), no. 1, 143-150.   DOI
18 T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in Mathematics, No. 41. Springer-Verlag, New York-Heidelberg, 1976.
19 B. C. Berndt, Reciprocity theorems for Dedekind sums and generalizations, Advances in Math. 23 (1977), no. 3, 285-316.   DOI
20 B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978), 332-365.   DOI
21 X. Chen and W. Zhang, A sum analogous to Dedekind sums and its mean value formula, Chinese Ann. Math. Ser. A 21 (2000), no. 6, 715-722.
22 J. B. Conrey, E. Fransen, R. Klein, and C. Scott, Mean values of Dedekind sums, J. Number Theory 56 (1996), no. 2, 214-226.   DOI   ScienceOn