1 |
Y. Song and R. Chen, Convergence theorems of iterative algorithms for continuous pseudocontractive mappings, Nonlinear Anal. 67 (2007), no. 2, 486-497.
DOI
ScienceOn
|
2 |
R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathe- matics, 183. Springer-Verlag, New York, 1998.
|
3 |
O. Nevanlinna, Global iteration schemes for monotone operators, Nonlinear Anal. 3 (1979), no. 4, 505-514.
DOI
ScienceOn
|
4 |
M. O. Osilike, Approximation methods for nonlinear m-accretive operator equations, J. Math. Anal. Appl. 209 (1997), no. 1, 20-24.
DOI
ScienceOn
|
5 |
S. Reich, Constructive techniques for accretive and monotone operators, Applied non-linear analysis (Proc. Third Internat. Conf., Univ. Texas, Arlington, Tex., 1978), pp. 335-345, Academic Press, New York-London, 1979.
|
6 |
R. E. Bruck Jr., A strongly convergent iterative solution of 0<2 U(x) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114-126.
DOI
ScienceOn
|
7 |
R. Chen, Y. Song, and H. Zhou, Viscosity approximation methods for continuous pseudocontractive mappings, Acta Math. Sinica (Chin. Ser.) 49 (2006), no. 6, 1275-1278.
|
8 |
R. Chen, Y. Song, and H. Zhou, Convergence theorems for implicit iteration process for a finite family of continuous pseudocontractive mappings, J. Math. Anal. Appl. 314 (2006), no. 2, 701-709.
DOI
ScienceOn
|
9 |
K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374.
DOI
|
10 |
B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
DOI
|
11 |
R. H. Martin Jr., A global existence theorem for autonomous differential equations in a Banach space, Proc. Amer. Math. Soc. 26 (1970), 307-314.
DOI
|
12 |
E. Zeidler, Nonlinear Functional Analysis and Its Applications, Part II: Monotone Operators, Springer- Verlag, Berlin, 1985.
|
13 |
W. Takahashi, Nonlinear Functional Analysis– Fixed Point Theory and its Applications, Yokohama Publishers inc, Yokohama, 2000.
|
14 |
W. Takahashi and Y. Ueda, On Reich’s strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984), no. 2, 546-553.
DOI
|
15 |
H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), no. 2, 631-643.
DOI
ScienceOn
|
16 |
Y. Song and R. Chen, An approximation method for continuous seudocontractive mappings, J. In-equal. Appl. 2006 (2006), Art. ID 28950, 9 pp.
|
17 |
T. D. Benavides, G. L. Acedo, and H. K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr. 248/249 (2003), 62-71.
DOI
ScienceOn
|
18 |
F. E. Browder, Nonlinear monotone and accretive operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 388-393.
DOI
ScienceOn
|
19 |
Y. Song, On a Mann type implicit iteration process for continuous pseudo-contractive mappings, Nonlinear Anal. 67 (2007), no. 11, 3058-3063.
DOI
ScienceOn
|
20 |
Y. Song, Iterative approximation to common fixed points of a countable family of nonexpansive mappings, Appl. Anal. 86 (2007), no. 11, 1329-1337.
DOI
ScienceOn
|
21 |
T. Suzuki, Moudafi’s viscosity approximations with Meir-Keeler contractions, J. Math. Anal. Appl. 325 (2007), no. 1, 342-352.
DOI
ScienceOn
|
22 |
S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), no. 1, 287-292.
DOI
|
23 |
R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Con-trol Optimization 14 (1976), no. 5, 877-898.
DOI
ScienceOn
|
24 |
N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3641-3645.
DOI
ScienceOn
|
25 |
T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for oneparameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), no. 1, 227-239.
DOI
ScienceOn
|