Browse > Article
http://dx.doi.org/10.4134/JKMS.2009.46.1.083

NEW ITERATIVE ALGORITHMS FOR ZEROS OF ACCRETIVE OPERATORS  

Song, Yisheng (COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE HENAN NORMAL UNIVERSITY)
Publication Information
Journal of the Korean Mathematical Society / v.46, no.1, 2009 , pp. 83-97 More about this Journal
Abstract
Two new iterative algorithms are provided to find zeros of accretive operators in a Banach space E with a uniformly $G\hat{a}teaux$ differentiable norm. Strong convergence for two iterations is proved and as applications, the viscosity approximation results are obtained also.
Keywords
accretive operators; iterative algorithms; strong convergence;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Y. Song and R. Chen, Convergence theorems of iterative algorithms for continuous pseudocontractive mappings, Nonlinear Anal. 67 (2007), no. 2, 486-497.   DOI   ScienceOn
2 R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathe- matics, 183. Springer-Verlag, New York, 1998.
3 O. Nevanlinna, Global iteration schemes for monotone operators, Nonlinear Anal. 3 (1979), no. 4, 505-514.   DOI   ScienceOn
4 M. O. Osilike, Approximation methods for nonlinear m-accretive operator equations, J. Math. Anal. Appl. 209 (1997), no. 1, 20-24.   DOI   ScienceOn
5 S. Reich, Constructive techniques for accretive and monotone operators, Applied non-linear analysis (Proc. Third Internat. Conf., Univ. Texas, Arlington, Tex., 1978), pp. 335-345, Academic Press, New York-London, 1979.
6 R. E. Bruck Jr., A strongly convergent iterative solution of 0<$\varepsilon$2 U(x) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114-126.   DOI   ScienceOn
7 R. Chen, Y. Song, and H. Zhou, Viscosity approximation methods for continuous pseudocontractive mappings, Acta Math. Sinica (Chin. Ser.) 49 (2006), no. 6, 1275-1278.
8 R. Chen, Y. Song, and H. Zhou, Convergence theorems for implicit iteration process for a finite family of continuous pseudocontractive mappings, J. Math. Anal. Appl. 314 (2006), no. 2, 701-709.   DOI   ScienceOn
9 K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374.   DOI
10 B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.   DOI
11 R. H. Martin Jr., A global existence theorem for autonomous differential equations in a Banach space, Proc. Amer. Math. Soc. 26 (1970), 307-314.   DOI
12 E. Zeidler, Nonlinear Functional Analysis and Its Applications, Part II: Monotone Operators, Springer- Verlag, Berlin, 1985.
13 W. Takahashi, Nonlinear Functional Analysis– Fixed Point Theory and its Applications, Yokohama Publishers inc, Yokohama, 2000.
14 W. Takahashi and Y. Ueda, On Reich’s strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984), no. 2, 546-553.   DOI
15 H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), no. 2, 631-643.   DOI   ScienceOn
16 Y. Song and R. Chen, An approximation method for continuous seudocontractive mappings, J. In-equal. Appl. 2006 (2006), Art. ID 28950, 9 pp.
17 T. D. Benavides, G. L. Acedo, and H. K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr. 248/249 (2003), 62-71.   DOI   ScienceOn
18 F. E. Browder, Nonlinear monotone and accretive operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 388-393.   DOI   ScienceOn
19 Y. Song, On a Mann type implicit iteration process for continuous pseudo-contractive mappings, Nonlinear Anal. 67 (2007), no. 11, 3058-3063.   DOI   ScienceOn
20 Y. Song, Iterative approximation to common fixed points of a countable family of nonexpansive mappings, Appl. Anal. 86 (2007), no. 11, 1329-1337.   DOI   ScienceOn
21 T. Suzuki, Moudafi’s viscosity approximations with Meir-Keeler contractions, J. Math. Anal. Appl. 325 (2007), no. 1, 342-352.   DOI   ScienceOn
22 S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), no. 1, 287-292.   DOI
23 R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Con-trol Optimization 14 (1976), no. 5, 877-898.   DOI   ScienceOn
24 N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3641-3645.   DOI   ScienceOn
25 T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for oneparameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), no. 1, 227-239.   DOI   ScienceOn