• Title/Summary/Keyword: zero-order hold

Search Result 38, Processing Time 0.027 seconds

Posture control of buoyancy sculptures using drone technology (드론 기술을 이용한 부력 조형물의 자세 제어)

  • Kang, Jingu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • The floating sculptures in the form of ad-ballon commonly used ropes in order to hold on. Relatively air flow is much less indoor than outdoor. Users of buoyancy sculptures hope to be able to maintain their desired posture without being fixed. This study applied drone technology to buoyancy sculptures. The drones can be moved vertically and horizontally, and the posture can be maintained, so buoyancy sculptures are easy to apply. Therefore, we have studied the control system of buoyancy sculpture using drone technology. Also, a control system that can maintain the desired posture at a constant height was studied. The overall shape was a light fiber material and helium gas for zero buoyancy to support the sculpture. The system configuration was STM32F103CB from ARM. In addition, the gyro and acceleration, geomagnetic sensors and motors are composed of small and medium size BLDC motors. The scheduling of the control system in the configuration of the control device was carefully considered. Because the role of the whole component becomes very important. The communication between the components is divided into the sensor fusion and the interface communication with the whole controller. Each communication technology is designed to expand. This study was implemented to actively respond from the viewpoint of posture control using the drone technology.

Discrete Representation Method of Nonlinear Time-Delay System in Control

  • Park, Ji-Hyang;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.327-332
    • /
    • 2003
  • A new discretization method for nonlinear system with time-delay is proposed. It is based on the well-known Taylor series expansion and the zero-order hold (ZOH) assumption. We know that a discretization of linear system can be obtained with the ZOH assumption and within the sampling interval. A similar line of thinking is available in nonlinear case. The mathematical structure of the new discretization method is explored and under the structure, the sampled-data representation of nonlinear system including time-delay is computed. Provided that the discrete form of the single input nonlinear system with time-delay is derived, this result is easily extended to nonlinear system with multi-input time-delay. For simplicity two inputs are considered in this study. It is enough to generalize that of multiple inputs. Finally, the time-discretization of non-affine nonlinear system with time-delay is investigated for apply all nonlinear system

  • PDF

Time-Discretization of Non-Affine Nonlinear System with Delayed Input Using Taylor-Series

  • Park, Ji-Hyang;Chong, Kil-To;Kazantzis, Nikolaos;Parlos, Alexander G.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1297-1305
    • /
    • 2004
  • In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sampled-data representation of a non-affine nonlinear system with constant input time-delay. The mathematical expressions of the discretization scheme are presented and the ability of the algorithm is tested for some of the examples. The proposed scheme provides a finite-dimensional representation for nonlinear systems with time-delay enabling existing controller design techniques to be applied to them. For all the case studies, various sampling rates and time-delay values are considered.

A study on the stability boundary of a virtual spring model with a virtual mass (가상스프링 모델의 안정성 영역에 대한 가상질량의 영향에 대한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.15-20
    • /
    • 2016
  • This paper presents the effects of a virtual mass on the stability boundary of a virtual spring in the haptic system. A haptic system consists of a haptic device, a sampler, a virtual rigid body and zero-order-hold. The virtual rigid body is modeled as a virtual spring and a virtual mass. According to the virtual mass and the sampling time, the stability boundary of the virtual spring is analyzed through the simulation. As the virtual mass increases, the value of the virtual spring to guarantee the stability gradually increases and then decreases after reaching the maximum value. These simulation results show that the addition of the virtual mass enables to expand the stability boundary of the virtual spring.

Time-Discretization of Nonlinear control systems with State-delay via Taylor-Lie Series (Taylor-Lei Series에 의한 지연이 있는 비선형 시스템의 시간 이산화)

  • Zhang, Yuanliang;Lee, Yi-Dong;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.125-127
    • /
    • 2005
  • In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sample-data representation of a nonlinear system with constant state tine-delay. The mathematical expressions of the discretization scheme are presented and the effect of the time-discretization method on key properties of nonlinear control system with state tine-delay, such as equilibrium properties and asymptotic ability, is examined. The proposed scheme provides a finite-dimensional representation for nonlinear systems with state time-delay enabling existing controller design techniques to be applied to then. The performance of the proposed discretization procedure is evaluated using a nonlinear system. For this nonlinear system, various sampling rates and time-delay values are considered.

  • PDF

Time Discretization of the Nonlinear System with Variable Time-delayed Input using a Taylor Series Expansion

  • Choi, Hyung-Jo;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2562-2567
    • /
    • 2005
  • This paper suggests a new method discretization of nonlinear system using Taylor series expansion and zero-order hold assumption. This method is applied into the sampled-data representation of a nonlinear system with input time delay. Additionally, the delayed input is time varying and its amplitude is bounded. The maximum time-delayed input is assumed to be two sampling periods. Them mathematical expressions of the discretization method are presented and the ability of the algorithm is tested for some of the examples. And 'hybrid' discretization scheme that result from a combination of the ‘scaling and squaring' technique with the Taylor method are also proposed, especially under condition of very low sampling rates. The computer simulation proves the proposed algorithm discretized the nonlinear system with the variable time-delayed input accurately.

  • PDF

Design of Deadbeat Controller for DC Motor Driving a Rotational Mechanical System (회전기계 계통을 가동시키는 직류전동기를 위한 데드비트저어기 설계)

  • Lee, Heung-Jae;Song, Ja-Youn
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.579-582
    • /
    • 1999
  • This paper presents a design method of deadbeat controller for DC motor driving a rotational system with gear. The results of sampling a continuous-data process does not guarantee that no ripples occur between the sampling instants in the continuous-data output, but the proposed deadbeat control system that consists of the integral controller and the full state observer, and zero order hold using in continuous systems, has many advantages of such as an output response without the ripple and reaching the steady state without error after a given sampling period and faster settling time than the optimal control system in the short sampling period. The results of case study through matlab simulation shown that the efficiency of the proposed controller for DC motor driving a rotational system with gear, is verified by comparing with optimal controller etc.

  • PDF

Time-Discretization of Nonlinear Systems with Time Delayed Output via Taylor Series

  • Yuanliang Zhang;Chong Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.950-960
    • /
    • 2006
  • An output time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via a digital computer. A new method for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed in this paper. This method is applied to the sampled-data representation of a nonlinear system with a constant output time-delay. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. In addition, 'hybrid' discretization schemes resulting from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. A performance of the proposed method is evaluated using two nonlinear systems with time-delay output.

Current Sampling Error in Digitally-Controlled AC Motor Drives (디지털 제어기로 인한 교류 전동기 제어 시스템의 전류 샘플링 오차 및 보상)

  • Yim, Jung-Sik;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.883-884
    • /
    • 2008
  • 디지털 제어기는 벡터 제어(Vector Control) 구현에 적합하기 때문에, 현재 대다수의 고성능 교류 전동기 구동 시스템에 사용되고 있다. 디지털 제어기를 사용하는 교류 전동기 구동 시스템에 대한 기존의 연구는 주로 디지털 제어기의 시지연이 제어 성능에 미치는 효과에 주목하였다. 그리고 디지털 제어기의 전류 샘플링 오차에 주목한 연구들은 주로 전력 변환기기의 전압 변조(PWM, Pulse Width Modulation)와 디지털 제어기의 샘플링 순간과의 관계에 따른 전류 샘플링 오차에 대해 연구하였다. 본 논문에서는 기존의 연구에서는 다루어지지 않았던 디지털 제어기의 제로-오더-홀드(Zero-Order Hold) 특성에 의해 발생하는 전류 샘플링 오차를 다룬다. 이 오차는 전동기의 전기적 회전 주파수가 디지털 제어기의 샘플링 주파수에 비해 무시할 수 없을 정도로 커지는 경우 그 영향이 두드러지게 된다. 본 논문에서는 이러한 전류 샘플링 오차를 분석하고, 이것을 보상하는 방법에 대해 서술한다.

  • PDF

Deriviation of the z-transfer Function of Optimal Digital Controller Using an Integral-Square-Error Criterion with the continuous-data Model in Linear Control Systems (선형연속데이터형 제어계통의 플랜트와 디지털모델의 오차자승적분지표에 의한 최적디지탈제어기의 전달함수유도)

  • Park, Kyung-Sam
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.6
    • /
    • pp.211-218
    • /
    • 1983
  • In this paper, an attempt is made to match the continuous state trajectory of the digital control system with that of its continuous data model. Matching the state trajectories instead of the output responses assures that the performances of the internal variables of the plant as well as the output variables are preserved in the discretization. The mathematical tool used in this research is an extended maximum principle of the Pontryagin type, which enables one to synthesize a staircase type of optimal control signals, such as the output signal of a zero-order hold asociated with a digital controller. A general mathematical expression of the digital controller which may be used to replace the analog controller of a general system while preserving as mauch as possible the performance characteristics of the original continuous-data control system is derived in this paper.

  • PDF