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Deriviation of the z-transfer Function of Optimal Digital Controller
Using an Integral-Square-Error Criterion with the
Continuous-data Model in Linear Control Systems
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Abstract

In this paper, an attempt is made to match the continuous state trajectory of the digital control
system with that of its continuous data model. Matching the state trajectories instead of the output
responses assures that the performances of the internal variables of the plant as well as the output vari-
ables are preserved in the discretization.

The mathematical tool used in this research is an extended maximum principle of the Pontryagin type,
which enables one to synthesize a staircase type of optimal control signals, such as the output signal
of a zero-order hold associated with a digital controller.

A general mathematical expression of the digital controller which may be used to replace the analog
controller of a general system while preserving as mauch as possible the perform3nceé characteristics
of the original continuous-data control system is derived in this paper.

systems has been of increasing interest to industrial

1. Introduction control, navigation, and flight control sytems
because sampled-data and digital control have more

Digital approximation of continuous-data control advantages (less effect due to noise and disturbance,

v F & Hoilgik Tk BRI 502 T8 no drift, improved sensitivity, better reliability,

e A9 19834 3H 2H more compact and lightweight, and less cost and so
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forth) than continuous control!’, From the stand-
point of implementation, the sampling rate should
be sufficiently low in order to allow time for com-
putation and for the computer to be time-shared.
But lower limits of the sampling rate are determined
by factors such as roughness in the time response,
errors due to measurement noise and sensitivity
to plant parameter uncertainty and disturbances.
The control system designer is then faced with the
task of optimizing the performance of the digital
control system at given rate of sampling.

In converting a contrinuous-data controller into a
digital controller, ad hoc approaches such as prewar-
ped Dbilnear transform and Tustin transform
techniques have typically been used. These methods
have the advantage of being straightforward and easy
to use, and they are intuitively appealing. But the
performance of a system digitalized by these approa-
ches resembles the performance of the continuous
system only when the sampling frequency is relatively
high, because the dynamics of the plant and the
feedback structure of the system are not taken into
considerations.

Five years ago Rattan® presented a method
using a complex-curve fitting technique to synthesize
the ditigal controller so that the frequency response
of the digitalized system matches that of the original
This
method is better than Tustin transform approach,

continuous model with a least-square fit.

especially for lower sampling frequencies), However,
this method does not take the time-domain per-

formances into consideration, and only the
magnitude plots of the frequency responses are
matched, without regard to the phase plots. To

compensate these shortcomings, the state-variable

design techniques in time-domain should be
developed.

In this study, an attempt is made to match the
continuous state trajectory of the digital control
system with that of its analog (continuous-data)
model. Matching the state trajectories instead of the
output responses assures that the performances of
the internal variables of the plant as well as the
output variable are preserved in the discretization.

It should also be emphasized that the matching is
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specified over the entire continuous time axis, not
just at discrete sampling instants, and is quantified
The choice
of this performance criterion is motivated by the fact

by a minimum integral squared error.

that if the state trajectories of two linear dynamical
systems match, then frequency responses of the two
systems will also match, as seen by Laplace-trans-
formation of the state equations.

The mathematical tool used in this research is
an extended maximum principle of the Pontryagin
type, which enables one to synthesize a “‘staircase”
type of optimal control signals, such as the output
signal of a zero-order hold associated with a digital
controller. The extended maximum principle was
initiated by Chang® and further developed by Yeh

and his co-workers™ 8,

2. Objectives

The main objective of this research is to derive
a general ‘mathematical expression of the digital
controller which may be wused to replace the
continuous controller of a general system while
preserving as much as possible the performance
characteristics of the original continuous system.
The specific objectives are
1) To derive an optimal control law for the digital

control system.

2) To derive the z-transfer function of the optimal
digital controller in terms of the parameters of the
continuous model,

No attempt has been made, however, to obtain
numerical results for control examples as a compara-
tive study, nor was there an attempt to develop
computer programs for evalution of the z-transfer
function of the digital controller, as these will be

proposed for further research.
3. Formulation of the Design Problem

Consider a linear continuous-data control system
(Fig. 1) that has satisfactory (or ideal) performances.
The state and output equations of the plant are
given by

X, = Axglt) + by, (1) (N
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Y (1) =€'x, (1) +du,, (1) (2)

The state and output equations of the controller are

given by
[ E()=Ax (1) +be, 1) ®3)
1 U (t) = chx (1) +d e, (t) 4)

Where xa'(t) and xc(t) are n and n. dimensional
vectors, respectively, u (t), e ft), Y, (t) and r(t)
are scalar functions. The dimensions of the coeffi-
cient matrices are commensurate with the vectors
with which they associate.

The design objective is to replace the controller
Gc(s) by a digital controller D(z) such that the state
trajectory of the digitalized system matches that of
the continuous model as closely as possible. The
digital control system is represented by Fig. 2, where
G(s) is the same plant as in the continuous model,
and D(z) is to be synthesized in such a way that when
r(t) is a step function, the performance index

T=[7 G x(1) %, (001 QUx(t) =x,(t)) + Bluft)

-u, ()17} at ()

attains its minimum, where

41 @ e 0
Q: 0. q'2 T 0 (6)
0 0 __________ qn
o e i
r
n G U )  PaO
- continuous controller plant

Fig. 1. Linear continuous system model.

(t) o~ et ekT)
" >§ D(z)

u
T digital controller T

xt)

zero-order hold plant

i23 —

Noté that the performance index is an integral,
not a discrete sum., Therefore attempt is made to
match the trajectories over continuous time axis,
not just at the sampling instants. The state and
output equations of the plant in the digital control

system are
{&m = Ax(t) + bu(kT) (7)
y(t)=c'x(t) + du(kT) (8)

for k1< t<(k+1)T, on account of the zero-order hold
used in the digital control system (Fig. 2).

4. The Optimal Strategy

4.1 The Extended Maximum Principle

An extended version of the maximum principle
of Pontryagin will be used to find the optimal control
sequence u(kT), k=1,2,.., which minimizes the
performance index®, The error sequence efkT) can
be expressed in terms of wufkt); and the digital
controller D(z) can be determined by

U(2)

D (Z): E(Z) (9)

where U(z) is the z-transform of u(kT) and E(z) is
the z-transform of e(k 7).

The extended maximum principle may be applied
to the case where the control inputs are outputs
of zero-order holds®®. It can be derived that a
necessary condition for an admissible control #(z) to

be optimal is that

*k+DT |,
[t {bprz)—B[u(kT}”~u,,,/t)1}dr=o (10)

where p(r) is the state vector of the adjoint system
satisfying

_ __OH [x(t), p(t), u(t) ]
ox(t) (11

p(t)

y(t)

Fig. 2. The digitalized system,
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and Hix(t), p(t), u(t)] is the Hamiltonian function

given by

H [x(t), p(1), u(t)] = p'(1)3(t)-% {Ix(t)-x (1))’

« Q Lxft)=x,(t)] +Blu(t)-u,, (1)1?]

(12)

Now substituting Eq. (12) into Eq. (11) and invo-
king Eq. (7) gives the adjoint state equation

blt) =-A'p(t)+Qlx(1)-x (1)] (13)

4.2 Determination of Optimal Control
Sequence

In order to solve Eq. (10) for the optimal control
sequence, the solution p(t) must first be obtained
from Eq. (13), which calls for the solutions of x(t)
in terms of u(kT), and xa{t} in terms of r(t).

Let the augmented state vector of the model

be

x,(t)
xa(t)=]..... (14)
x,(t)
Then
Xp(t)=A, _x_(t)+b, 1(t) (15)
where
bd.c' be',
T ltdd,  1+dd,
A, = (16)
bee’ | bedec
[+dd, ¢ l+dd,
bd,
1+dd,
b, = (17
be
l+dd,

Define Qm to be the nx/n+n) matrix obtained by
augmenting columns of zeros to Q, i.e.,

9, = [:0] (18)

WREGHLIE H32%
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Then by definition

Ox,(1)=Q x (1) (19)
Assume that ¥(z) is a step function, f.e.,
i) = {a t=20
0 t<0 (20)
Solutions of the state and adjoint equations, um(t)
become
x(t) = O(t-kT) x(kT) + °(t&T) bu(kT) 2n
Xy (1) = ®py (t-KT) %, (kT) + D, (tkT)b,, ¢ (22)
p(t) = W(t-kT) p(kT) + F(t-kT) x(kT)
+ FS(t-kT) bu(kT) - F ,,(t,T) x, (kT)
-F,(t-kT) b & (23)
u,(t)=c, x (t)+d, a (24)
for kT<t<(k+l)T.
where
®(t) = e’ (25)
(1) = f; P(r) dt (26)
At
P (t)=¢ 27)
t
&, 0t)=f, @ (r)dr (28)
¢ =[dec'/1+dd, ¢ /1+dd, | (29)
dm =d./1+dd, (30)
Y(r)=e At (31)
F(t) =[ Wer) Q b(r) dr (32)
F@ = Fmar (33)
F.0=[ We1)Q, ¥, mdr (34)
F ()= J':Fm (1) dr (35)

Substituting Eq. (23) & Eq. (24) into Eq. (10) gives
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BTu(kT) =b'[VS(T) p(kT) + F(T) x(kT)
+ F‘"(T}bu(kT) - FS,(T) x,, (kT)
= FS(T) bl +8c  [5,(T) x,, (kT)

+@5(T) bpal +BTd 0 (36)

where
(D) =[] v dr (37
F**(T) = fUTF‘ (t) dt (38)
Fam=["r () ar (39)
O (1) =[] ®;, () dt (40)

Solving Eq. (36) for the optimal control sequence
gives

w(kT) ={ [b'FS,(T) = Bc'y %, (T) x,, (KT)
~b'[F* (T) x(kT) + ¥5(T) p(kT))
+ (B F0(T) - Be'n V3 (T)) b,y
-p1d, 1 a}/ [6'FSS(T) b - BT] (41)

5. The Digital Controller

5.1 z-transform of the Optimal Control
Sequence

In order to determine U(z) for use in Eq(9),

X(z), Xm(z), and P(z) must be determined first,

Setting t=(k+1)T in Egs. (21)~(23) gives

x [(k+1)T] = &(T) x(kT) + D° bu(kT) (42)

X, [E+DTY =@, (T) x,,(kT) + @, (T) b 00 (43)

p [(k+1)T] = Y(T) p(kT) + F(T) x(kT)

= F o (T) %, (KT) + F*(T) bu(kT) - F$,(T) b,
(44)

Taking z-transformation of Egs. (42)~(44) gives,
respectively
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x(z) = &z) [2x(0) + O°(T) bu(z) (45)

xm(z)=d, (2) [2%,,(0) + B, (T) b, azj(2-1)]
46)

p(z) = U(z) [2p(0) + F(T) x(2) = F 0, (T) X (2)
+ FST) bu(z) - F5,(T) b,,az/(z-1)] CY))

where

& (z) = [21-®(2)]"! (48)
& (2)=(a-0 (1)1 (49)
V(z) = [21-y(T)] ™ (50)

Substituting Egs. (45) and (46) into Eqs. (47) gives

p(z) = Ji(z) { zp(0) + F(T) &(z) zx(0)

~F,(T) b, (2)2x ,,(0) - [F,u(T) &, (z) &5, (T)
+Fo (T)] bnoz/(z-1) + [F(T) B(z) &5(T)

+F%(T)] bU(z) (51)

Substituting Eqs. (45), (46), and (51) into the z-
transform of Eq. (41), we obtain a solution Ufz/ as

U@) = [b'Kp(2)—Be',, DWT) Du(z)] 2 ,,(0)
~b'[K,@)2p (0) + K(z) 2x(0)] + [b'H n ()b

=8¢’ Hy(2) bm—BTd ] oz/(2—1) /[b'H(z) b—FT]

(52)

where
K (2)= $T) § (z) (53)
K(z) = F(T)+ K, (z) F(T)] ®(2) (54)
Kn@=[F (T +K,0) F, ()], (2) (55)
Ho(z) = B(T) + 85, (T)D, (2) &S (T) (56)
H(z) = F*S(T) + Ko (z) F* (T) + K(z) &%(T) (57

H, (2) =FJ(T)+ Ko(z) F5, (T) + K ,,(2) &5, (T) (58)
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5.2 Z-transform of the Error
From the block diagram of Fig. 2 and Eqgs. (8)
and (21) we may write

e(t)=a-yft) (59)

y(t) =’ PkTINET) + [¢' D (t-kT)b+d] u (kT)

(60)
for kT<t <(k+1)T. Therefore
elk+1)T] =a—c T XkT)-[c'T) b
+dlukkT) (61)

Taking z-transform of the above equation, we have

E(z) =e(0%) + a/(z-1) - 'B(T) x(z) 2!

-['Q(T)p +d] 21 Ufz) (62)

where e(0+) is found from Eq. (59) and Eq. (8).

e(0Yy =a - ¢'x(07) - quio™ (63)

Substituting Egs. (63) and (45) into Eq. (62) we have

E(z) = az/(z-1) - du(0h) - ¢'(14®0(T) d(2)1 x(0)

=2 1+ 9(T) B(z)) ¥(T)b +d } Ulz)
(64)

where u(0") may be obtained from Eq. (41). Setting
=0 in Eq. (41) and substituting the resulting expres-
sion of u(0+) into Eq, (64) yields
E(z) =ab" V*(T) p(0)/[b'F*(T) b’ - BT
+{db'F° (T)1[b F..(T)b - BT - ¢'[1+&(T)d
(2)1} x(0) = d[b'F3 (T) - Be'm ®°(T)] X 1u(0)
-2 (' I4(T) $(z)] @°(T)b +d ) Ufz)
+{z/(z-1) = d[(B'F(T) - Be'm D5 (T)) b

-BTdm1/Ib'F*S(T) b -BT]} a (65)
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5.3 The z-transfer Function of the Digital
Controller

By virtue of the relationship given in Eq. (9), the
z-transfer function of the digital controller may now
be written, provided that the initial conditions
x , (0), x(0) and p(0) are known,

For the system under consideration, the state
trajectory of the continuous model is assumed to

start from x,,(0) = 0. Let x(0), the initial state

of the plant of the digital control system, be unspeci-

fied. Then p(0)=0. However, since the minimization

of the performance index given in Eq. (5) means
the continuous matching of x(t) with x4(t) over
an infinitely long period of time, it is reasonable
to conjecture that Xt/ starts at the same point as
Xg4(t), or very close to it, provided that the sampling
frequency is considerably higher than the natural

frequency of the control system. Hence the initial

condition may be chosen as

x, (0})=0 (66)
x(0) =0 ©7
P/0)=0 (68)

Substituting these conditions into Egs. (52) and

(65) and using the resulting expressions in Eq. (9),

we obtain

D(z)h = [b'H(z)b - BT] | z~d(7-1) [(b'F33(T)

-Bc'n YW(T) bm ~BTdm)/1b'FS(T)b
=BT}/ (6" Hm(2)b s - B mHo(z)b 1
-B7Td ] z-{c [H(T)d(2)] D°(T)b
+d}z?

(69)

For most control systems, there is no direct linkage
between the control signal and the output. For
these systems the coefficient d is zero, and the z-

transfer function of the digital controller is

D(z) ={[b'H(z)b -~ BT]/[6'H , (2)b,, — Bc'wHo(2)b

-BTd ] -c' ® (z) B(T)b} (70)
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6. Illustrative Example

In this section a simple continuous system with
unity feedback is digitalized by the method given
in this paper. The block diagram of the illustrative

continuous-data control system is as shown in Fig. 3.

Xa()

1(t) O Ya® 1

+ \1 s+1

Fig. 3. A simple continuous system.

=Y a(t)

The problem is to discretize, i.e. to design a digital
controller as shown in Fig. 2 so that the state trajec-
tory of the continuous-data system matches that of
the digitalized system.

It is seen from Fig. 3, Egs. (16), (17), (29), and
Eq. (30) that

G(s) = 1/(st1)

Ac=10], bc=10],

A =[-1], b =[1],
Am=[—2],bm=[1],

ce =101, dc=1[1]

¢ =[1], d =[0]
Cn=1-11, dpn=[1]

Therefore, the z-transfer function of the optimal
digital controller under the conditions that a=1,
B=1, and Q=Q =1 is given by

0.980520(2-0.945007) (z-0.960789)
(z-0.945018) (2-0.961544)

D(z) =

Table 1. Values of ya(t) and y(t).

No. t Yot y(t)
1 0.00 0.00000 0.00000
2 0.04 0.03844 0.03845
3 0.08 0.07393 0.07394
4 0.20 0.16484 0.16486
5 0.40 0.27534 0.27536
6 0.60 0.34940 0.34943
7 0.80 0.39905 0.39908
8 1.00 0.43233 0.43235
9 1.60 0.47962 0.47963

10 2.60 0.49724 0.49724

11 3.60 0.49963 0.49962

— 27 —_—

When the sampling period T is selected to be 0.04
[sec] the outputs of the continuous-data system
and the digitalized system with the optimal digital

controller are shown in Table 1.
7. Concluding Remarks

A general mathematical expression of the optimal
digital controller which can be used to replace the
analog controller of a continuous data control system
while matching the continuous state trajectory of
the digitalized system with that of its continuous-
data model was derived in this paper by using an
extended maximum principle of the Pontryagin type.
Matching the state trajectories instead of the output
responses assures that the performances of the
internal variables of the plant as well as the output
variables are preserved in the discretization. The
author emphasize that the matching is specified over
the entire continuous time axis, not just at discrete
sampling instants, and is quantified by a minimum
integral squared error.

It is seen from a simple illustrative numerical
example that the deriviation of the z-transfer func-
tion of optimal digital controller developed in this
study can be effectively used to design optimal
digital controller. And the digitalized control system
will be run under less effect due to noise and dis-
turbance, no drift, improved sensitivity, and better
reliability.

Obtaining numerical results for control examples
as a comparative study and developing computer
programs for evaluation of the z-transfer function
of the optimal digital controller are proposed for
further research.
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