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1. INTRODUCTION 

 
Time-delay occurred during the information processing and 

data transmission in many engineering systems. In recent 
years, there were many systems that were controlled via 
network and transferred the data from a remote site owing to 
the development of networks, in the sense that time-delay, 
which possibly occurs during the data transmission through 
the network, is the most important factor for the system 
performance.  

Many studies have been performed to solve the problems of 
time-delay during that time. Boutayeb designs an observer for 
the discrete system with state-delay and output-delay and 
presents a necessary and sufficient condition for the 
asymptotic stability using the Lyapunov method [1]. Luo and 
Chung propose a method of delay-dependent criterion that 
guarantees the asymptotic stability of the linear uncertain 
system with time-delay [2]. Nihtia, Damak, and Babary 
propose a design method of the real-time delay estimator for 
the input delay of SISO system with the finite dimension by 
transferring the time-delayed part of the system to the 
transport system, which has a type of linear partial differential 
equation [3].  

As in the digital controller design issue, generally, the two 
methods are usually used. Firest, the controller design is to be 
performed in the continuou-time space based on the 
continuous-time model, and then it is transformed to a digital 
controller [4,5,6,7]. Although this method has been used in 
many of the existing studies, a time-delay system is left with 
the implementation of a digital controller that has many 
limitations due to the infinite dimension of a delayed item in 
the time-delayed system. Second, it directly designs a digital 
controller based on the discrete-time space model after 
transforming the continuous-time model to the discrete-time 
space model. By using this method, the implementation of a 
digital controller is more unrestricted because the problem of 
infinite dimension due to the time-delayed item in the 
discrete-time space can be solved by this method. Therefore, 

the second method is well suited to discretize the time-delayed            
system. This paper proposes a discretizing method for the 
nonlinear system with a time-delayed input using the well 
known existing discretizing algorithm [8],[9] and for the 
nonlinear system with variable time-delay using a Taylor 
series expansion [10],[11].  Generally, there are some 
difficulties for directly applying the results of the above 
studies to the actual system because the delayed input values 
are time-varying in a system. Therefore, this study proposes a 
discretizing algorithm for the nonlinear system with variable 
time-delayed input for an actual system, using a Taylor series 
expansion. Besides, the well-known ‘scaling and squaring’ 
technique, which is widely used for computing the matrix 
exponential, is applied to the nonlinear case, when the 
sampling period is too large.  
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This paper consists of the following chapters to explain the 
results of the study. Chapter 2 presents the existing method of 
discretizing for a system with variable time-delay using a 
Taylor series expansion. Chapter 3 derives a discretizing 
algorithm for the nonlinear system that has a variable 
time-delay in the input of what the algorithm proposed in this 
study. A discretizing algorithm using a Taylor series 
expansion is derive din the case that the values of delay are 
changed within, twice for the sampling period after observing 
the case that the values of delay are changed in a single 
sampling period. Chapter 4 proves that the proposed algorithm 
for time-varying delay has a good performance by using 
‘scaling and squaring’ technique when a large sampling  
period is used. Chapter 5 performs a computer simulation for 
the algorithm proposed in this study. Finally, Chapter 6 
provides the conclusion fo this study and direction of the 
future study.  

 
2. DISCRETIZING OF THE NONLINEAR 

SYSTEM USING TAYLOR SERIES EXPANSION 
 
2
 
.1 Discretizing of the nonlinear system with time-delay 

  In this section, a discretizing algorithm for the nonlinear 
system with a constant time-delay is considered. Let us 
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assume the nonlinear system is as shown in Eq. (1).  
( ) ( ( )) ( ( )) ( )dx t f x t g x t u t D

dt
= + −                 (1) 

  In case of applying the zero-order-hold (ZOH) assumption 
for the above system as in the linear system, the delayed 
values of input can be applied by the separated two different 
time intervals as shown in Eq. (2).  
 

( ) ( 1)
( ) {

( ) ( )
u kT qT T u k q

u t D
u kT qT u k q
− − ≡ − −

− =
− ≡ −

kT t kT
kT t kT T

   γ
γ
≤ < +

+ ≤ < +
                                              (2) 
Therefore, the state values for kT γ+  can be obtained as 

presented in Eq. (3) due t the application of the input values of 
time interval [ , )kT kT γ+ .  

( ) ( ( ), ( 1))x kT x kT u k qγγ+ = Φ − −              (3) 

where γΦ  can be derived directly by using Eq. (4). 

∑
∞
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T l
TkukxAkxkukxkx    (4) 

  In the same manner, the values of the state vector for 
 can be obtained as shown in Eq. (5) owing to the 

application of the input values of the time interval 
( 1)k + T

])1(,[ TkkT ++ γ .  

))(),(()( qkukTxTkTx T −+Φ=+ − γγ               (5) 

  The sampled-data representation of the nonlinear system  
(1) can be achieved by using Eq. (3) and (5) as follows.  

))()),1(),((())(),1(),(()1( qkuqkukxqkuqkukxkx T
D
T −−−ΦΦ=−−−Φ=+ − γγ

 

                                           (6) 
  If the finite series truncation order N is to apply for Eq. (6), 
the approximated sampled-data representation can be obtained 
as follows.  

))(),1(),(()1( , qkuqkukxkx DN
T −−−Φ=+          (7) 

 
3. Discretizing of the nonlinear system with variable 

time-delayed input 
3 .1 For the time-delay is smaller than the sampling period 
  Let us consider the nonlinear system as shown in Eq. (8). 

))(())(())(()( tDtutxgtxf
dt

tdx
−+=                 (8) 

  Let us assume Eq. (8) will be discretized to get the sampling 
period of .The values of time-delay for the 

kth sampling period can be expressed as follows.  
01 >−= + kk ttT

k kD q T kγ= +                                    (9) 

where  and  is a real number. Where the 

values of the delay are smaller than a single sampling period, 
the time interval for the kth sampling period can be divided 
into the two different sections of 

0=kq 10 <≤ kγ

[ , ),[ , )k kkT kT kT kT Tγ γ+ + +  based on the point of time 

when the time-delay occurs. This is because the maximum 
delayed input located within a single sampling period. In this 
case, the values of kγ  become an important factor as the 

calculation of the state values because the delayed input values 

in the sampling periods can be decided by the values of kγ . 

Therefore, the input values applied to the system can be 
expressed according to the interval as shown in Eq. (10) for 
the time-delay has occurred for the kth sampling period.  

( ) (k ku t D u k q 1)− = − −      ( )kkT t kT γ≤ < +  

              (10) ( )ku k q= − ( ) (kkT t kT Tγ+ ≤ < + )
  The discretizing of the nonlinear system of Eq. (8) that has 
an input presented by Eq. (10) using a Taylor series expansion 
is shown as follows.  

1
( ) ( ) ( ( ), ( 1))

!

l
l k

k k
l

x kT x kT A x kT u k q
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γγ

∞
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+ = + − −∑   

                         )( kkTtkT γ+<≤    (11) 
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( )( ) ( ) ( ( ), ( ))
!

l
l k

k k k
l

Tx kT T x kT A x kT u k q
l
γγ γ

∞

=

−
+ = + + + −∑  

                      (12) )()( TkTtkT k +<≤+γ
  By using Eq. (11) into Eq. (12), the following equations can 
be acquired.  

1 1

( )( ) ( ) (( ( ) ( ( ), ( 1)) ), ( ))
! !

l l
l l k k

k k
l l

Tx kT T x kT A x kT A x kT u k q u k q
l lk
γ γ

γ
∞ ∞

= =

−
+ = + + + − − −∑ ∑

 

                                              (13) 

  The approximation of Eq. (13) up to the order of N is shown 

as follows.  

1 1

( )( ) ( ) (( ( ) ( ( ), ( 1)) ), ( ))
! !

l lN N
l l k k

k k
l i

Tx kT T x kT A x kT A x kT u k q u k q
i lk
γ γγ

= =

−
+ = + + + − − −∑ ∑

 

                                              (14) 

  Therefore, the nonlinear system that has a variable 

time-delayed input is smaller than one sampling gperiod can 

be discretized by the discretized time space model with the 

order of N as shown in Eq. (14). 
 
3.2 For the time-delay is smaller than twice the sampling 
period 
   Let us consider the nonlinear system as shown in Eq. (8) 
again. In addition, assume that the time-delay for the kth 
sampling period is 

k kD q T kγ= + , where is an 

integer, and  is a real number. Moreover, assume 

that the delayed values in the present sampling periods and 
previous sampling periods are already known. If the values of 
te variable time-delay are bigger than the sampling scale, the 
input values will be beyond the sampling periods and affect 
the next sampling period. As a result, a system, which has a 
single input, will be applied over two inputs according to the 
magnitude of a time-delayed. In this case, if the previous input 
before one step is inputted after the input of the present step, 
the input of the previous sep will be neglected and of the 
present step will only affect the system. Therefore, if the 
values of the variable time-delay are bigger than one sampling 
period, the verification of which input affects to the system for 
each sampling period shall be required. In this study, the 
factors for each time-delay are compared to solve these 
problems. The kth time-delay can be expressed as 

,...2,1,0=kq
10 <≤ kγ

k kD q T kγ= + , where  presents multiple sampling period, kq
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and  shows where the location of the time-delay in the 

sampling interval is. It is possible to determine where the 
time-delayed inputs are applied to the system by checking the 
values of . In case two inputs exist in a single sampling 

interval, it is possible to verify which numbers of the input are 
applied to the system by comparing the values of . These 

processes are shown as follows. First of all, in case of 
 and , the time-delayed input for the kth 

input can be applied to the kth period. 

kγ

kq

kγ

01 =−kq 0=kq

 
 
 
 
 
 
 
    Fig. 1 The input values when q(k-1)=0 and q(k)=0 
 
  Therefore, the input values in the kth period, are as shown 
in Fig. 1, can be determined as follows; 

( ) ( 1)ku t u k q= − −    
kkT t kT γ≤ < +  

( ) ( )ku t u k q= −       ( 1)kkT t k Tγ+ ≤ < +        (15) 

  The (k-1)th input will affect the system, because the kth 
input cannot affect the kth period for  and . 

Therefore, the input values in this period are as shown in Fig. 
2 can be expressed as follows: 

01 =−kq 1=kq

( ) ( )ku t u k q= −                  (16) ( 1)kT t k T≤ < +
 
 
 
 
 
 
    Fig 2. The input values when q(k-1)=0 and q(k)=1 
 
  In the case of  and , there are two input 

values in a single sampling interval. Therefore, it is necessary 
to check which input can be affected firstly to the system. First 
of all, for the condition of 

11 =−kq 0=kq

1k kγ γ− ≥ , the (k-1)th input will be 

neglected because the kth input is applied to the system before 
the (k-1)th input affect the system. Therefore, the input values 
are as shown in Fig. 3 defined as follows.  

( ) ( 2)ku t u k q= − −    kkT t kT γ≤ < +  

( ) ( )ku t u k q= −       ( 1)kkT t k Tγ+ ≤ < +         (17) 

 
 
 
 
 
 
 
 
       Fig. 3 The input values when q(k-1)=1 & q(k)=0,  

            r(k-1) > r(k) 
   
On the other hand, for the condition of 1k kγ γ− < , the input 

of both the (k-1)th and the kth affect the system. Hence, the 
input values are as shown in Fig. 4 defined as follows: 

( ) ( 2)ku t u k q= − −        1kkT t kT γ −≤ < +  

( ) ( 1)ku t u k q= − −        1k kkT t kTγ γ−+ ≤ < +  

( ) ( )ku t u k q= −          ( 1)kkT t k Tγ+ ≤ < +     (18) 

 
 u(k-2) 
 
 
 
 
 
 
      Fig. 4 The input values when q(k-1)=1 & q(k)=0,  
           r(k-1) < r(k) 
 
  Finally, in the case of  and , the (k-1)th 

input can only affect the kth sampling period. Therefore, the 
input values are as shown in Fig. 5 defined as follows: 

11 =−kq 1=kq

( ) ( 1)ku t u k q= − −          1kkT t kT γ −≤ < +  

( ) ( )ku t u k q= −          1 ( 1)kkT t k Tγ −+ ≤ < +    (19) 

 
 
 
 
 
 
 
     Fig. 5 The input values when q(k-10=1 and q(k)=1 
 
  By substituting the results into the approximated equation 
wit the order of N using a Taylor series expansion, the 
discretizing equation for the nonlinear system with variable 
time-delay in which the values of a time-delay are less than 
twice of the sampling period can be obtained as follows. First 
of all, in the case of  and , the values of the 

state vector can be expressed as follows: 

01 =−kq 0=kq

1
( ) ( ) ( ( ), ( 1))

!

lN
l k

k k
l

x kT x kT A x kT u k q
l
γγ

=

+ = + − −∑  

                               kkT t kT γ≤ < +  

1

( )( ) ( ) ( ( ), ( ))
!

lN
l k

k k k
l

Tx kT T x kT A x kT u k q
l
γγ γ

=

−
+ = + + + −∑  

                            ( 1)kkT t k Tγ+ ≤ < +  (20) 

  For  and , the values of the state vector 

can obtained as follows: 

01 =−kq 1=kq

1

( )( ) ( ) ( ( ), ( ))
!

lN
l k

k
l

Tx kT T x kT A x kT u k q
l
γ

=

−
+ = + −∑  

                             (21) ( 1)kT t k T≤ < +
  For  and , the values of the state vector 11 =−kq 0=kq
can be expressed as follows in the case of 

1k kγ γ− ≥ .  

kT 
kD (k+1)T 

u(k-1) 
u(k) 

1−kD (k+1)T 
kD  kT 

u(k-1) 

u(k-2) 

kT (k+1)T 
1−kD

u(k) 

kD

kT 
1−kD

u(k) 

(k+1)T 
kD

u(k-2) 
u(k-1) 

kT 
1−kD (k+1)T 
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lN
l kx kT x kT A x kT u kk k
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1
( ) ( ) ( ( ), ( 2))

!=

−

                             
kkT t kT γ≤ < +  
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  For 1k kγ γ− < , the value of the btained  state vector can be o

s: as follow
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1
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= + − −∑  
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1
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!

l
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l

u k q
l
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=

−
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1k kkT t kTγ γ−+ ≤ < +

N
lγ γ+ = + + +  

 

1

( )( ) ( ) ( ( ), ( ))
!

l
k

k k k
l

Tx kT T x kT A x kT u k q
l
γ

=

−
−∑

                        ( 1)kkT t k Tγ+ ≤ < +   (23) 

4. ‘SCALING AND SQUARING’ TECHNIQUE 
 

 n 

entatio
ique, which is also called 

 
 

 When the Taylor series method is applied it provides a
accurate result. However, the order N must be very large in 
order to achieve the desired accuracy, if the sampling interval 
T is also large. this is due to the probability that when T is 
considerably large !/][ lTA ll  might become extremely large 
(due to the finite- arithmetic0 before it becomes 
small at higher powers, when convergence takes over. In the 
case of linear system this phenomenon occurs when 
calculating ATe  and ∫

T AT dte , which causes overflow of the 

computer number repres n. 
  A ‘scaling and squaring’ techn

precision 

o

‘extrapolation to the limit’ technique in the numerical analysis 
literature, can be applied to solve this kind of problem. this 
technique Is popularly used to calculate the exponential matrix 

)exp(AT  for large sampling period by applying ‘scaling and 
echnique one can subdivide the sampling interval T 

into two or more subintervals of equal length. An appropriate 
positive integer m can be chosen s that mT 2/  is small 
enough to calculate the exponential matrix.  case the 
sampling period T is subdivided into m2  equally spaced 
subintervals of length mT 2/  and the exponential matrix is 
calculated for a short in  mT 2/ . Finally, ‘squaring’ the 
matrix )2/exp( mAT  m times performs the computation of 

exp(AT

squaring’ t

In this

terval

) : 

= 2...2 ))))
2

(((exp()exp( m

TAAT

 m

 

  By applying the Taylor series ethod the popular ‘scaling 

subintervals, and use a small Taylor expansion order N with a 

he edia

and squaring’ technique is easily extended to the nonlinear 
case. When doing a particular analogue, one can use nonlinear 
operators and powers of operators to substitute matrices and 
matrix products. Subsequently, the key idea utilized in the 
nonlinear analogue of the ‘scaling and squaring’ technique 
remains the same as the linear case.  
  In the nonlinear case, when T is large enough, one can 
divide the interval ),[ 1+kk tt  to m2  equally spaced 

time step mT 2/ , for t interm te subintervals to 
substitute the large order N’ used in the single-step Taylor 
method case
   Assume now that nn RRTN →Ω :),'(  is the operator that 
corresponds to the Taylor expansion of order N’ with a time 

 m2  

.  

step T, and when it acts come is: 

)(),

 on )(kTx  the out
~()( kTxTNTkTx Ω=+  

where 
lT

~
~  ∑

=

+=•Ω
N

l

  Using d
system is wri

l

l
kukxITN A

1

][

!
))(),(())(,(

 the operator notation the resulting iscrete-time 
tten as follows; 

)()
2

,()(
2

kTxTNTkTx m ⎥⎦
⎤

⎢⎣
⎡Ω=+  

m

  The above ASDR can be viewed as the direct result of 
combining the Taylor’s method and the ‘scaling and squaring’ 
technique.  
  Knowing how to choose the parameters of N and m is 
important. Different values of N and m can reflect different 
requirements of the discretization performance. In fact the 
criterion for electing an appropriate m involves comparing the 
magnitude of the sampling period T with the fastest time 
constant ρ/1  of the original continuous-time system. If T is 

small compared to ρ/2 , then we can set 0=m , and apply 
the single-step Taylor series method. Since T is small, a low 
order N single-step or discretization m  is usually 
sufficient to meet the expected accuracy requirement. When T 
is larger than the fastest time constant 

Tayl ethod

ρ/1 , we apply the 
‘scaling and squaring’ discretization technique. the sampling 
interval is therefore subdivided into m2  ntervals, and a 
low-order N single step Taylor discretization method is applied 
to each subinterval. These subdivisions require that the 
following inequality hold: 

subi

ρ
2

2
<m

T  

 Since the requirements fo
 a

 r numerical convergence and 
stability re also met. The positive integer m is assigned as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= 0,1logmax 2 θ

Tm  

where ρθ /2<  is arbitrarily chosen and  denotes the 
integer part of the number 

[ ]x
x . It is evident, that smaller 

of the arbvalues itrarily selected number θ  ould result in 

more stringent bounds on mT / . 
 

5. COMPUT IM
 

w

ER S ULATION 

5.1 Simple chemical pr 
 In order is study, a 

l system of CSTR. 

2

ocessing system 
to verify the algorithm proposed in th 

simulation was performed for the typica
he system equation can be expressed s shT own in Eq. (40). 

2'( ) ( ) 3 ( ) ( ( ))(1 ( ))x t x t x t u t D t x t= − − + − −           (40) 
  The initial condition is (0) 0x = , and the input and 
time-delay is applied by a sinusoidal wave.

conditio
 This simulation 

consists of the two cases; the ns are changed by the 
period of sinusoidal delay and of sampling period. In addition, 
this study assumes and compares that the results of the method 
of the Taylor series and Matlab ODE Solver proposed by this 
study are the exact values of the system. It is possible to verify 
that the basis of what the results of Matlab ODE Solver can be 
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used as a reference value from the study of Park [12, 13].  
  Fig. 6 shows the state values and relative errors for the 
system in which the input is given by 

( ) 0.9*sin(( ( )) / 4)u t t D t= − , time-delay is 

re 6
lues are not exceed

the state values and relative erro
input is g

 the 
nput and time-de

od, which is 

. As a re
decreased by
 

 

( ) 0.04*sin( / 4) 0.05D t t= +  for the sampling period of 

, the maximum errors for 
ed over 1%. Figure 7 presents 
rs for the system in which the 

iven by ( ) 0.9*sin(( ( )) / 4)u t t D t= − , the 
time-delay is ( ) 0.04*sin( / 4) 0.05D t t= +  for the 

sampling period of T = results 
of the system that lay except 
for the sampling peri given by 0.005secT= . The 
RMS values for each case present 0.0018 for the sampling 
period of 0.05secT= . In case of the sa  of 

0.01secT = , the RMS value is 0.0014 and is 0.0009 for 
0.01seT = sult, it is shown that the RMS value is 

 the shorter sampling period. 

0.05secT= . As shown in Figu
the state va

0.01sec . Figure 8 shows
has the same i

mpling period

c

 
    Fig. 6 State errors and values of CSTR, T=0.05sec 
 

  
  Fig 7 Sampling period of delay is changed, T=0.01sec 
 

  

assume

  Fig 8 Sampling period of delay is changed, T=0.005sec 

 
5.2 Second-order nonlinear system  

Another simulation for the second-order nonlinear system 
with a variable time-delay that is a little more complex than 
that of the first-order nonlinear system presented in Section 
4.1. The system equation is shown in Eq. (41). 

2"( ) '( )(1 ( )) ( ) ( ( ))x t x t x t x t u t D t= − − + −

1 1 1 2
' 2
2 2 2 2 1 1

( ) ( )

( ) ( ) (1 )

f X g X u X

X f X g X u X X X u

= + =

= + = − − +
          (43) 

  The same simulation formed as the CSTR is applied to the 
second-order nonlinear system, and various experiments are 

results of computer 

            (41) 
The initial conditions are  and the 

input and time-delay is applied by a sinusoidal wave. In order 
to apply the discretizing algorithm using a Taylor series, the 
system will be changed by the state-space equation. If we 

 the state f the system as follows, 

0)0(',1.0)0( == xx

ulation for the system in which th given by 
( ) sin(10*( ( )))u t t D t= − , time-delay is 
( ) 0.0009*sin( ) 0.001D t t= +  for the sampling period of 

0.001secT= . As shown in Figure 7 and 8, the state values in 
the continuous-time are close to the discre

1 ,X x=  
2 'X x=                               (42) 

s follows. The state variables can be expressed a
'X

also achieved. Figure 7 and 8 show the 
sim e input is 

te-time. In addition, 
 errors of state values between the two it is shown that the

state 1X  is 5102093.9 −×  and 2X 4 −

 

different time domain are quite small. The RMS value for the 
 is 

 

4100962. × . 

 
 Fig 12 State values of using Matlab and Maple (T=0.001s) 
 

  
  Fig 13 State differences between Matlab and Maple  
        (T=0.001s) 
 
  From the foregoing results of the experiments we see that 
the values of state error will be decreased by the decrement of 
the sampling period of the system. In the case of the same 
sampling period, the state errors are decreased by the smaller 

2566



ICCAS2005                                        June 2-5, KINTEX, Gyeonggi-Do, Korea       
 

changes of the time-delay. It is considered that this is because 
the zero-order-hold assumption is applied to he time-delayed 
values in the simulation. that is, there are some errors that the 
values of time-delay are not exactly followed by the sampling 
period in the continuous-time space, because the values of the 
variable time-delay in the discrete-time space is constant in the 
sampling period while the values are maintained at the point 
of time of the sampling In addition, it is shown that the errors 
of the delayed valued affect the calculation of the state values 
so that the state errors will occur. As seen from the preceding 
investigations, we see that the performance of discretizing 
algorithms for the values of the variable time-delay in the 

udy on the dicretizing of the nonlinear system with variable 

.3 Scaling and squaring technique 

st
time-delay is very important. 
 
5
  In this section, we will show that ‘scaling and squaring’ 
technique the system more precise results in discretization 
when sampling period of system is greater than proper one.  
  Consider the nonlinear CSTR systems as following: 

2'( ) ( ) 3 ( ) ( ( ))(1 ( ))x t x t x t u t D t x t= − − + − −  
  Sampling period is assumed to be T=2sec. According to 
[13], the proper sampling period of CSTR should be less than 
0.6 sec, so our assumption is reasonable. Fig. 14 shows the 
result of discretization with scaling and squaring technique. As 
shown at Fig 14, the maximum error is less than 410− . 
Therefore, ‘scaling and squaring’ technique is useful when the 
system has a large sampling period.  
 

   
      Fig. 14 Results of scaling and squaring technique 
 
 

6. CONCLUSIONS 
  This paper proposes a discretizing method for the nonlinear 
system that has a variable time-dela

errors show 
he 

y input using a Taylor 
eries expansion. The computer simulations with various 

examples are applied to verify the proposed algorithms. The 
time-delay is to be restricted to less than twice of the sampling 
period for each simulation commonly, and the ZOH 
assumption is applied for the discretizing of the variable 
time-delay for each sampling period. From the results of the 
experiments, the values of state error will be decreased by the 
smaller sampling period of the system. In case of the same 
sampling period, the state errors are decreased more by the 
smaller changes of time-delay. By following the results of the 
simulation, the maximum state errors do not exceed over 1% 
for the state values in the continuous-time space, and the 

around % compared with the system that has 
n t
 one, 

e showed that ‘scaling and squaring’ technique can be used 
 get a discretization algorithm which shows better results. 

Moreover, it is also shown that the discetizing algorithms 

 & 

] Chen, C. T., Linear system Theory and Design. Holt, 
Rinhart and Winston, Orlando, 1984 

-Reihen und ihre Anwendungen. 

[7]
of continuous-time 

nonlinear systems by finite polynomials with exactly 
determined co ings of the 2001 

[10] 

 

[12] 

 

 
 
 
 

s

210−

proposed in this paper make a satisfactory result, which can be 
verified by the RMS values for each error. In order to reduce 
the maximum state errors, we would like to apply the 
first-order-hold assumptions for the values of variable 
time-delay as a study in the future.  
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