• Title/Summary/Keyword: zero-IF

Search Result 707, Processing Time 0.03 seconds

ON A GENERALIZATION OF THE P$\'{O}$LYA-WIMAN CONJECTURE

  • Kim, Young-One
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.825-830
    • /
    • 1994
  • This paper is concerned with the zeros of successive derivatives of real entire functions. In order to state our results, we introduce the following notations : An entire function which assumes only real values on the real axis is said to be a real entire function. Thus, if a complex number is a zero of a real entire function, then its conjugate is also a zero of the same function.

  • PDF

On the Diameter, Girth and Coloring of the Strong Zero-Divisor Graph of Near-rings

  • Das, Prohelika
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1103-1113
    • /
    • 2016
  • In this paper, we study a directed simple graph ${\Gamma}_S(N)$ for a near-ring N, where the set $V^*(N)$ of vertices is the set of all left N-subsets of N with nonzero left annihilators and for any two distinct vertices $I,J{\in}V^*(N)$, I is adjacent to J if and only if IJ = 0. Here, we deal with the diameter, girth and coloring of the graph ${\Gamma}_S(N)$. Moreover, we prove a sufficient condition for occurrence of a regular element of the near-ring N in the left annihilator of some vertex in the strong zero-divisor graph ${\Gamma}_S(N)$.

GENERALIZED CAYLEY GRAPH OF UPPER TRIANGULAR MATRIX RINGS

  • Afkhami, Mojgan;Hashemifar, Seyed Hosein;Khashyarmanesh, Kazem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1017-1031
    • /
    • 2016
  • Let R be a commutative ring with the non-zero identity and n be a natural number. ${\Gamma}^n_R$ is a simple graph with $R^n{\setminus}\{0\}$ as the vertex set and two distinct vertices X and Y in $R^n$ are adjacent if and only if there exists an $n{\times}n$ lower triangular matrix A over R whose entries on the main diagonal are non-zero such that $AX^t=Y^t$ or $AY^t=X^t$, where, for a matrix B, $B^t$ is the matrix transpose of B. ${\Gamma}^n_R$ is a generalization of Cayley graph. Let $T_n(R)$ denote the $n{\times}n$ upper triangular matrix ring over R. In this paper, for an arbitrary ring R, we investigate the properties of the graph ${\Gamma}^n_{T_n(R)}$.

A LINEAR APPROACH TO LIE TRIPLE AUTOMORPHISMS OF H*-ALGEBRAS

  • Martin, A. J. Calderon;Gonzalez, C. Martin
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.117-132
    • /
    • 2011
  • By developing a linear algebra program involving many different structures associated to a three-graded H*-algebra, it is shown that if L is a Lie triple automorphism of an infinite-dimensional topologically simple associative H*-algebra A, then L is either an automorphism, an anti-automorphism, the negative of an automorphism or the negative of an anti-automorphism. If A is finite-dimensional, then there exists an automorphism, an anti-automorphism, the negative of an automorphism or the negative of an anti-automorphism F : A $\rightarrow$ A such that $\delta$:= F - L is a linear map from A onto its center sending commutators to zero. We also describe L in the case of having A zero annihilator.

ERROR BOUNDS OF TRAPEZOIDAL RULE ON SUBINTERVALS USING DISTRIBUTION

  • Hong, Bum-Il;Hahm, Nahm-Woo
    • Honam Mathematical Journal
    • /
    • v.29 no.2
    • /
    • pp.245-257
    • /
    • 2007
  • We showed in [2] that if $r\leq2$, then the average error between simple Trapezoidal rule and the composite Trapezoidal rule on two consecutive subintervals is proportional to $h^{2r+3}$ using zero mean Gaussian distribution under the assumption that we have subintervals (for simplicity equal length) partitioning and that each subinterval has the length. In this paper, if $r\geq3$, we show that zero mean Gaussian distribution of average error between simple Trapezoidal rule and the composite Trapezoidal rule on two consecutive subintervals is bounded by $Ch^8$.

A Study on Adaptive Signal Processing of Digital Receiver for Adaptive Antenna System (어댑티브 안테나 시스템용 디지털 수신기의 적응신호처리에 관한 연구)

  • 민경식;박철근;고지원;임경우;이경학;최재훈
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.44-48
    • /
    • 2002
  • This paper describes an adaptive signal processing of digital receiver with DDC(Digital Down Convertor), DDC is implemented by using NCO(Numerically Controlled Oscillator), digital low pass filter. for the passband sampling, we present the results of digital receiver simulation with DDC. We confirm that the low IP signal is converted to zero IF by DDC. DOA(Direction Of Arrival) estimation technique using MUSIC(Multiple SIgnal Classification) algorithm with high resolution is presented. We Cow that an accurate resolution of DOA depends on the input sampling number.

  • PDF

Scheduling Algorithms for the Maximal Total Revenue on a Single Processor with Starting Time Penalty

  • Joo, Un-Gi
    • Management Science and Financial Engineering
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • This paper considers a revenue maximization problem on a single processor. Each job is identified as its processing time, initial reward, reward decreasing rate, and preferred start time. If the processor starts a job at time zero, revenue of the job is its initial reward. However, the revenue decreases linearly with the reward decreasing rate according to its processing start time till its preferred start time and finally its revenue is zero if it is started the processing after the preferred time. Our objective is to find the optimal sequence which maximizes the total revenue. For the problem, we characterize the optimal solution properties and prove the NP-hardness. Based upon the characterization, we develop a branch-and-bound algorithm for the optimal sequence and suggest five heuristic algorithms for efficient solutions. The numerical tests show that the characterized properties are useful for effective and efficient algorithms.

On the Representations of Finite Distributive Lattices

  • Siggers, Mark
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.1-20
    • /
    • 2020
  • A simple but elegant result of Rival states that every sublattice L of a finite distributive lattice 𝒫 can be constructed from 𝒫 by removing a particular family 𝒥L of its irreducible intervals. Applying this in the case that 𝒫 is a product of a finite set 𝒞 of chains, we get a one-to-one correspondence L ↦ 𝒟𝒫(L) between the sublattices of 𝒫 and the preorders spanned by a canonical sublattice 𝒞 of 𝒫. We then show that L is a tight sublattice of the product of chains 𝒫 if and only if 𝒟𝒫(L) is asymmetric. This yields a one-to-one correspondence between the tight sublattices of 𝒫 and the posets spanned by its poset J(𝒫) of non-zero join-irreducible elements. With this we recover and extend, among other classical results, the correspondence derived from results of Birkhoff and Dilworth, between the tight embeddings of a finite distributive lattice L into products of chains, and the chain decompositions of its poset J(L) of non-zero join-irreducible elements.

CONSTRUCTIONS OF REGULAR SPARSE ANTI-MAGIC SQUARES

  • Chen, Guangzhou;Li, Wen;Xin, Bangying;Zhong, Ming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.617-642
    • /
    • 2022
  • For positive integers n and d with d < n, an n × n array A based on 𝒳 = {0, 1, …, nd} is called a sparse anti-magic square of order n with density d, denoted by SAMS(n, d), if each non-zero element of X occurs exactly once in A, and its row-sums, column-sums and two main diagonal-sums constitute a set of 2n + 2 consecutive integers. An SAMS(n, d) is called regular if there are exactly d non-zero elements in each row, each column and each main diagonal. In this paper, we investigate the existence of regular sparse anti-magic squares of order n ≡ 1, 5 (mod 6), and prove that there exists a regular SAMS(n, d) for any n ≥ 5, n ≡ 1, 5 (mod 6) and d with 2 ≤ d ≤ n - 1.

A THIRD-ORDER VARIANT OF NEWTON-SECANT METHOD FINDING A MULTIPLE ZERO

  • Kim, Young Ik;Lee, Sang Deok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.845-852
    • /
    • 2010
  • A nonlinear algebraic equation f(x) = 0 is considered to find a root with integer multiplicity $m{\geq}1$. A variant of Newton-secant method for a multiple root is proposed below: for n = 0, 1, $2{\cdots}$ $$x_{n+1}=x_n-\frac{f(x_n)^2}{f^{\prime}(x_n)\{f(x_n)-{\lambda}f(x_n-\frac{f(x_n)}{f^{\prime}(x_n)})\}$$, $$\lambda=\{_{1,\;if\;m=1.}^{(\frac{m}{m-1})^{m-1},\;if\;m{\geq}2$$ It is shown that the method has third-order convergence and its asymptotic error constant is expressed in terms of m. Numerical examples successfully verified the proposed scheme with high-precision Mathematica programming.