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CONSTRUCTIONS OF REGULAR SPARSE

ANTI-MAGIC SQUARES
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Abstract. For positive integers n and d with d < n, an n × n array

A based on X = {0, 1, . . . , nd} is called a sparse anti-magic square of
order n with density d, denoted by SAMS(n, d), if each non-zero element

of X occurs exactly once in A, and its row-sums, column-sums and two
main diagonal-sums constitute a set of 2n + 2 consecutive integers. An

SAMS(n, d) is called regular if there are exactly d non-zero elements in

each row, each column and each main diagonal. In this paper, we inves-
tigate the existence of regular sparse anti-magic squares of order n ≡ 1, 5

(mod 6), and prove that there exists a regular SAMS(n, d) for any n ≥ 5,

n ≡ 1, 5 (mod 6) and d with 2 ≤ d ≤ n− 1.

1. Introduction

Magic square had a long history and had been widely studied, and the
interested reader may refer to the two monographs [3] and [5]. A magic square
of order n is an n × n array whose entries are an arrangement of the integers
1, 2, . . . , n2, in which all elements in each row, each column and each main
diagonal, add to the same sum. As an example, it is easy to verify that the
following array A is a magic square of order 3:

A =
4 9 2
3 5 7
8 1 6

.

There exists a magic square of order n if and only if n ≥ 3 [19]. Regarding the
construction methods and history of magic squares, the interested reader may
refer to [2–5,19].

Sparse semi-magic squares were introduced by Gray and MacDougall in 2006
[13] and applied to construct vertex-magic edge labeling for digraphs. A sparse
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semi-magic square is an n× n array where the numbers 1, 2, . . . , r with r < n2

are placed once each with the remaining entries 0 such that all the rows and
columns have a constant sum s. Let

B =

8 13
6 10 5
2 7 12
4 14 3
9 11 1

,

where the empty positions of B indicate 0. Then it is easy to verify that B is
a sparse semi-magic square.

For positive integers n and d with d < n, a sparse magic square of order
n with density d, denoted by SMS(n, d), is an n × n integer array containing
the numbers 1, 2, . . . , nd with the remainder of its entries 0’s and all the rows,
columns and two main diagonals have a constant sum. An SMS(n, d) is called
regular if there are exactly d non-zero elements in each row, each column and
each main diagonal. The array C below illustrates a regular SMS(5, 4), where
the empty positions of C indicate 0:

C =

16 4 15 7
2 13 9 18
10 20 1 11

3 12 8 19
14 6 17 5

.

The existence of a regular SMS(n, d) has been completely solved by Li et al.
[20]. They showed that for any positive integers n and d with d < n, there
exists a regular SMS(n, d) if and only if d ≥ 3 when n is odd, or d is even and
d ≥ 4 when n is even.

An anti-magic square of order n is an n × n array whose entries are an
arrangement of the integers 1, 2, . . . , n2, and its row-sums, column-sums and
two main diagonal sums constitute a set of 2n + 2 consecutive integers. We
give the following array D as an example of an anti-magic square of order 4,
where the last column and the last row indicate its row-sums and column-sums,
respectively, and two main diagonal-sums are 29 and 34, respectively:

D =

2 15 5 13 35
16 3 7 12 38
9 8 14 1 32
6 4 11 10 31

33 30 37 36

.

In 1994, Abe [1] proposed an open problem about the existence of an anti-magic
square of order n, that is,

Problem 2.23. Find a method of constructing an anti-magic square of every
order.
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In 2002, Jiang [17] proved that for any even n ≥ 4, there exists an anti-magic
square of order n. Cormie et al. [10] showed that there exists an anti-magic
square of order n if and only if n ≥ 4.

Sparse anti-magic squares can be viewed as a generalization of anti-magic
squares. For positive integers n and d with d < n, let A be an n × n array
on the elements 1, 2, . . . , nd with the remainder of its entries 0’s and let SA be
the set of row-sums, column-sums and two main diagonal sums of A. We call
SA the sum set of A. Then A is called a sparse anti-magic square of order n
with density d, denoted by SAMS(n, d), if each element of {1, 2, . . . , nd} occurs
exactly once in A and SA consists of 2n + 2 consecutive integers. In [12], an
SAMS(n, d) is also called a sparse totally anti-magic square. An SAMS(n, d)
is called regular if there are d non-zero elements in each row, each column and
each main diagonal. As an example, a regular SAMS(5, 2) is listed below:

E =

1 6
2 8

5 3
9 7

4 10

,

where the empty positions of E indicate 0.
Sparse anti-magic squares and sparse magic squares are useful in graph the-

ory. For instance, they can be used to construct vertex-magic total labeling for
bipartite graphs [12, 16, 18], regular graphs [11, 14, 15], trees and cubic graphs
[21,22].

Recently, Chen et al. [6–8] proved the following results.

Lemma 1.1 ([8], Theorem 1.1). There exists a regular SAMS(n, n− 1) if and
only if n ≥ 4.

Lemma 1.2 ([7], Theorem 1.2). There exists a regular SAMS(n, n− 2) if and
only if n ≥ 4.

Lemma 1.3 ([6], Theorem 1.3 and Theorem 1.4). (i) There exists a regular
SAMS(n, 3) if and only if n ≥ 4. (ii) There exists a regular SAMS(n, 5) if and
only if n ≥ 6.

In this paper, we investigate the existence of regular sparse anti-magic
squares of order n ≡ 1, 5 (mod 6) and obtain the following theorem.

Theorem 1.4. Suppose that n is a positive integer satisfying n ≥ 5 and n ≡ 1,
5 (mod 6), there exists a regular SAMS(n, d) for any d with 2 ≤ d ≤ n− 1.

For convenience, the following notations are used throughout this paper. Let
Z be the set of integers, In = {1, 2, 3, . . . , n} and we always use Im and In to
label the rows and columns of an m × n array, respectively. Let a, b ∈ Z and
[a, b] be the set of integers v such that a ≤ v ≤ b. If A is an array based on
Z, let R(A) and C(A) be the set of row-sums and the set of column-sums of
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A, respectively. Usually, the main diagonal of a square array from upper left
to lower right is called the left diagonal, the other is called the right diagonal.
Let l(A) and r(A) be the sum of the elements in the left diagonal and the right
diagonal of A, respectively. Then SA = R(A) ∪ C(A) ∪ {l(A), r(A)}. Suppose
that a and n are positive integers, and define 〈a〉n as follows.

〈a〉n =

{
r, if n - a, a = mn+ r and 0 < r < n,
n, if n | a.

Clearly, 1 ≤ 〈a〉n ≤ n.
The rest of this paper is organized as follows. In Section 2, we shall define

some terminologies such as Latin square, symmetric diagonal Kotzig arrays and
symmetric forward diagonal arrays, and state some results on them for later
use. We show that there exists a regular SAMS(n, 2) and a regular SAMS(n, 4)
for n ≡ 1, 5 (mod 6) and n ≥ 5 via direct construction in Section 3 and Section
4, respectively. In Section 5, we prove that there exists a regular SAMS(n, d)
for n ≡ 1, 5 (mod 6) and d ∈ [6, n− 3]. In Section 6, the proof of Theorem 1.4
is presented, and we give some concluding remarks for future work.

2. Preliminaries

In this section, we shall give some definitions such as Latin square, symmetric
diagonal Kotzig arrays and symmetric forward diagonal arrays etc. and state
some new results on them for later use.

Definition 2.1. A Latin square of order n is an n×n array in which each cell
contains a single symbol from an n-set S, such that each symbol occurs exactly
once in each row and exactly once in each column.

A transversal in a Latin square of order n is a set of n cells, one from each
row and column, containing each of the n symbols exactly once. A diagonal
Latin square of order n is a Latin square of order n whose left diagonal and
right diagonal are both transversals. A forward diagonal of an array B = (bi,j)
of order m× n is the set {bi,〈j+i〉n | i ∈ Im} for each j ∈ In.

Definition 2.2. Suppose n and d are positive integers with d ≤ n. A d × n
rectangular array A = (ai,j), i ∈ Id, j ∈ In, is a symmetric diagonal Kotzig
array if it has the following properties:

1. Each row is a permutation of the set In = {1, 2, . . . , n}.
2. All columns have the same sum.
3. All forward diagonals have the same sum.
4. ai,j + ad+1−i,n+1−j = n+ 1 for each (i, j) ∈ Id × In.

Three-row arrays satisfying the first two conditions of Definition 2.2 were
used by Kotzig [18] to construct edge-magic labelings and there is an account of
this in [23,24] where they are called Kotzig arrays. Gray and MacDougall have
constructed a d-row generalization of these Kotzig arrays and they have been
used to construct vertex-magic labelings for complete bipartite graphs [16]. The
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arrays satisfying the first three conditions of Definition 2.2 were used by Gray
and MacDougall [13] to construct sparse semi-magic square and vertex-magic
labelings, and they are called diagonal Kotzig arrays. Our constructions of
squares require diagonal Kotzig arrays with the additional diagonal condition
stated as property 4 above.

Definition 2.3. Suppose n and t are positive integers and t ≤ n. A t×n array
A = (ai,j), i ∈ It, j ∈ In, whose positions are an arrangement of the integers
1, 2, . . . , nt, is a symmetric forward diagonals array, denoted by SFD(t, n) for
short, if it satisfies the following properties:

1. All columns have the same sum.
2. All forward diagonals have the same sum.
3. ai,j + at+1−i,n+1−j is a constant for any (i, j) ∈ It × In.

If A1 = (a
(1)
i,j ) is an SFD(t, n) over Int, let a

(2)
i,j = a

(1)
i,j + l, where l is a

nonnegative integer, then A2 = (a
(2)
i,j ) is also an SFD(t, n) over [1 + l, nt+ l].

Construction 2.4. If there exists a symmetric diagonal Kotzig array of order
d× n, then there exists an SFD(d, n).

Proof. Let A = (ai,j) be a symmetric diagonal Kotzig array of order d×n and
B = (bi,j) be the d× n array with bi,j = i− 1, where i ∈ Id, n ∈ In. We shall
show that S = A+ nB = (si,j) is an SFD(d, n).

Clearly,
d⋃
i=1

n⋃
j=1

{si,j} = Idn. Note that the columns of A and B have constant

sum, respectively, and therefore the columns of S = A + nB will also have
a constant sum s. The forward diagonals of A and B have constant sum,
respectively, and so the forward diagonals of S will also have a constant sum
s. Since ai,j + ad+1−i,n+1−j is a constant, we have

si,j + sd+1−i,n+1−j = (ai,j + nbi,j) + (ad+1−i,n+1−j + nbd+1−i,n+1−j)

= ai,j + ad+1−i,n+1−j + n(d− 1)

is a constant. Hence S is an SFD(d, n). �

Now we give the existence of a symmetric diagonal Kotzig array by using
direct construction and the recurrence method.

Theorem 2.5. There exists a symmetric diagonal Kotzig array of order d×n
for any odd integer n ≥ 3 and integer d ∈ [3, n].

Proof. For i ∈ I3, j ∈ In, let A3 = (ai,j), where

a1,j =

{
n− j−1

2 , if j is odd,
n+1−j

2 , if j is even,
a2,j = j, a3,j = n+ 1− a1,n+1−j .
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For i ∈ I4, j ∈ In, let A4 = (bi,j) =
(
B1

B2

)
, where

b1,j =

 j, if j ≤ n−1
2 ,

j + 1, if n+1
2 ≤ j ≤ n− 1,

n+1
2 , if j = n,

b2,j =


n+1
2 , if j = 1,

n+ 2− j, if 2 ≤ j ≤ n+1
2 ,

n+ 1− j, if j > n+1
2 ,

b3,j = n+ 1− b2,n+1−j , b4,j = n+ 1− b1,n+1−j .

For i ∈ I5, j ∈ In, let A5 = (ci,j), where

c1,j = [
n+ 1

2
(j − 1)] (mod n) + 1, c2,j = n+ 1− j, c3,j = j,

c4,j = n+ 1− j, c5,j = j +
n+ 1

2
− c1,j .

It is readily checked that A3, A4, A5 and A6 =
(
A3

A3

)
are symmetric diagonal

Kotzig arrays of order d× n for d = 3, 4, 5, 6, respectively.
We write integer d ≥ 7 as d = 4k + α, where k ≥ 1 and α ∈ {3, 4, 5, 6}. Let

E =


B1

...
B1

Aα
B2

...
B2

 ,

where Bi occurs k times for i = 1, 2. It is clear that E is a symmetric diagonal
Kotzig array of order (4k + α)× n. �

Remark 2.6. (i) It is to be pointed out that the array A4 also has the property
that for any j ∈ In,

b1,j + b2,〈j+1〉n = b3,j + b4,〈j+1〉n = n+ 1.

(ii) There are many ways to obtain a symmetric diagonal Kotzig array of
order d× n with d ≥ 7. Let

F =



A3

B1

...
B1

Aα
B2

...
B2

A3


,

where Bi occurs k− 1 times for i = 1, 2. Then it is easy to check that F is also
a symmetric diagonal Kotzig array of order (4k + 2 + α)× n.

(iii) When d = 2e and e ≥ 3, we can get a symmetric diagonal Kotzig array
of order d× n by joining two symmetric diagonal Kotzig arrays of order e× n
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coming from Theorem 2.5. They will be used in the proof of the following when
the number of the rows of a symmetric diagonal Kotzig array is even d ≥ 6.

Combining Construction 2.4 and Theorem 2.5, we have the following theo-
rem.

Theorem 2.7. For any odd n ≥ 3 and t ∈ [3, n], there exists an SFD(t, n)
over [1 + l, nt+ l] for any nonnegative integer l.

Remark 2.8. By (i) and (iii) of Remark 2.6, for e ≥ 2 and any nonnegative
integer l, there exists an SFD(2e, n), F = (fi,j), over [1 + l, 2en + l] by using
Construction 2.4 and Theorem 2.5, and it has the additional properties:

fi,〈i+x〉n + f2e+1−i,n+1−〈i+x〉n = 2en+ 1 + 2l,

and
e∑
i=1

fi,〈i+x〉n +

2e∑
i=e+1

fi,〈i+x+y〉n = (2en+ 1 + 2l)e

for any x, y ∈ In.

3. Regular SAMS(n, 2) for n ≥ 5 and n ≡ 1, 5 (mod 6)

In this section, we shall prove that there exists a regular SAMS(n, 2) for
n ≥ 5 and n ≡ 1, 5 (mod 6). The idea of our construction is divided into three
steps. Firstly, we give a special array A and a Latin square B. Secondly we
shall put the elements of A into the Latin square B to obtain W such that
W is a regular SAMS for n ≡ 1 (mod 6) and a near regular SAMS for n ≡ 5
(mod 6), respectively. Furthermore, for n ≡ 5 (mod 6), we can obtain a regular
SAMS, W ∗, by doing some column permutations to W .

Theorem 3.1. There exists a regular SAMS(n, 2) for n ≥ 5 and n ≡ 1, 5
(mod 6).

Proof. We write n ≥ 5 and n ≡ 1, 5 (mod 6) as n = 2m + 1, where m > 1.
Construct a special 2 × n array A = (ai,j) over [1, 4m + 2], where i = 1, 2,
j ∈ In and

a1,j=

 n+ j, j ∈ [1,m− 1],
n+ j + 1, j ∈ [m, 2m],
n, j = 2m+ 1,

a2,j=

 j, j ∈ [1,m],
3m+ 1, j = m+ 1,
j − 1, j ∈ [m+ 2, 2m+ 1].

Let Rσ, σ = 1, 2, be the set of the elements in the σ-th row of A. It is easy to
see that

R1 = [n+ 1, n+m− 1] ∪ [n+m+ 1, n+ 2m+ 1] ∪ {n}
= [2m+ 2, 3m] ∪ [3m+ 2, 4m+ 2] ∪ {2m+ 1}
= [2m+ 1, 4m+ 2] \ {3m+ 1},

R2 = [1,m] ∪ {3m+ 1} ∪ [m+ 1, 2m] = [1, 2m] ∪ {3m+ 1}.
We have R1 ∪R2 = [1, 4m+ 2].
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Let S1 and S2 be the set of column-sums and forward diagonal-sums, re-
spectively. By a simple calculation, we have

S1 =

n⋃
j=1

{a1,j + a2,j}

=

m−1⋃
j=1

{a1,j + a2,j} ∪ {a1,m + a2,m, a1,m+1 + a2,m+1}

∪

 2m⋃
j=m+2

{a1,j + a2,j}

 ∪ {a1,2m+1 + a2,2m+1}

=

m−1⋃
j=1

{n+ 2j} ∪ {2n, 3n+ 1} ∪

 2m⋃
j=m+2

{n+ 2j}

 ∪ {n+ 2m}

=

 2m⋃
j=1

{n+ 2j} \ {2n+ 1}

 ∪ {2n, 3n+ 1},

S2 =

n−1⋃
j=1

{a1,j + a2,j+1} ∪ {a1,2m+1 + a2,1}

=

m−1⋃
j=1

{a1,j + a2,j+1} ∪ {a1,m + a2,m+1} ∪

 2m⋃
j=m+1

{a1,j + a2,j+1}


∪ {a1,2m+1 + a2,1}

=

m−1⋃
j=1

{n+ 2j + 1} ∪ {(n+m+ 1) + (3m+ 1)}

∪

 2m⋃
j=m+1

{n+ 2j + 1}

 ∪ {n+ 1}

=

 2m⋃
j=1

{n+ 2j + 1} \ {2n}

 ∪ {3n, n+ 1}.

It follows that S1 ∪ S2 = [n+ 1, 3n+ 1]\{2n+ 1}.
Let B = (bi,j), where bi,j = 〈2i+ j − 1〉n, i, j ∈ In. It is easy to check that

B is a diagonal Latin square of order n over In with the property

bn+1−i,n+1−j = 〈2(n+ 1− i) + (n+ 1− j)− 1〉n
= 〈3n+ 1− (2i+ j − 1)〉n = (n+ 1)− bi,j ,

i.e.,
bi,j + bn+1−i,n+1−j = n+ 1.
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For each j ∈ In, define

f(x, j) = i if bi,j = x, that is, f(bi,j , j) = i

and let
g(s) = 〈m+ 2s− 1〉n, s ∈ In.

It is easy to see that for each j ∈ In, f(x, j) is a bijection function from In to
In since B is a Latin square over In, and g is also a bijection function from In
to In.

We put a1,s and a2,s, s ∈ In, into the positions (f(m, g(s)), g(s)) and (f(m+
2, g(s)), g(s)) of B, respectively, the other positions of B are all filled by 0,
denoted by W = (wi,j), where i, j ∈ In, that is, wf(m,g(s)),g(s) = a1,s and
wf(m+2,g(s)),g(s) = a2,s.

It is clear that the elements of the s-th column, s ∈ In, of A are filled into
the g(s)-th column of W , so the non-zero elements in the same column of W
is just in the same column of A, C(W ) = S1. We shall show that a1,s and
a2,〈s+1〉n , s ∈ In, are in the same row of W . To do this, we need only prove
that for any s ∈ In, f(m, g(s)) = f(m+2, g(s+1)). Without loss of generality,
suppose that f(m, g(s)) = ξ. We have bξ,g(s) = 〈2ξ + g(s) − 1〉n = m by the
definition of f , and also have

bξ,g(s+1) = 〈2ξ + g(s+ 1)− 1〉n
= 〈2ξ + g(s) + 2− 1〉n
= 〈2ξ + g(s)− 1〉n + 2 = m+ 2.

It follows that f(m+ 2, g(s+ 1)) = ξ. Then the non-zero elements in the same
row of W is just in the forward diagonal of A, R(W ) = S2. It is clear that

C(W ) ∪R(W ) = S1 ∪ S2 = [n+ 1, 3n+ 1]\{2n+ 1}.
Next, we shall consider the sum of the elements in the two main diagonals of

W . There are exactly 2 non-zero elements in each main diagonal ofW according
to the definition of the diagonal Latin square B. It is easy to calculate that

a1,m+2 = wf(m,g(m+2)),g(m+2)

= wm,m+2

since g(m+ 2) = m+ 2, bi,j = 〈2i+ j − 1〉n = 〈2m+ (m+ 2)− 1〉n = m when
i = m, j = m+ 2, and fm,j = i, i.e., fm,m+2 = m, and

a2,m+1 = wf(m+2,g(m+1)),g(m+1)

= wm+2,m

since g(m+ 1) = m, bi,j = 〈2i+ j − 1〉n = 〈2(m+ 2) +m− 1〉n = m+ 2 when
i = m+ 2, j = m, and fm+2,j = i, i.e., fm+2,m = m+ 2. Hence the sum of the
elements in the right diagonal of W is

wm,m+2 + wm+2,m = a1,m+2 + a2,m+1

= (n+m+ 2 + 1) + (3m+ 1) = 3n+ 2.
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We shall divide it into two cases to deal with the left diagonal-sum below.
Case 1: We write n ≥ 7 and n ≡ 1 (mod 6) as n = 6k + 1, where k ≥ 1.

Clearly, m = 3k.
There are exactly two non-zero elements in the left diagonal of W according

to the definition of the diagonal Latin square B. By simple calculation we have

a1,k+1 = wf(m,g(k+1)),g(k+1)

= wn−k,n−k

since g(k + 1) = n − k, bn−k,n−k = 〈2(n − k) + (n − k) − 1〉n = 3k = m and
f(m,n− k) = n− k, and

a2,n+1−k = wf(m+2,g(n+1−k)),g(n+1−k)

= wk+1,k+1

since g(n + 1− k) = k + 1, bk+1,k+1 = 〈2(k + 1) + (k + 1)− 1〉n = m + 2 and
f(m+ 2, k + 1) = k + 1. Then the sum of the elements in the left diagonal of
W is

wk+1,k+1 + wn−k,n−k = a2,n+1−k + a1,k+1

= (n+ 1− k − 1) + (n+ k + 1)

= 2n+ 1.

So, W is a regular SAMS(n, 2).
Case 2: We write n ≥ 5 and n ≡ 5 (mod 6) as n = 6k − 1, where k ≥ 1.

Obviously, m = 3k − 1.
When k = 1, a regular SAMS(5, 2) is given as an example in Section 1.
When k > 1, we have there are exactly 2 non-zero elements in the left

diagonal of W , but their sum is not 2n+ 1. In fact,

a1,5k = wf(m,g(5k)),g(5k)

= wk,k

since g(5k) = k, bk,k = 〈2k + k − 1〉n = 3k − 1 = m and f(m, k) = k, and

a2,k+1 = wf(m+2,g(k+1)),g(k+1)

= wn+1−k,n+1−k

since g(k+ 1) = n+ 1− k, bn+1−k,n+1−k = 〈2(n+ 1− k) + (n+ 1− k)− 1〉n =
3k+ 1 = m+ 2 and f(m+ 2, n+ 1−k) = n+ 1−k. So the sum of the elements
in the left diagonal of W is

wk,k + wn+1−k,n+1−k = a1,5k + a2,k+1

= (5k + 1 + n) + (k + 1)

= 2n+ 3 6= 2n+ 1.

The array W ∗ = (w∗i,j), i, j ∈ In, is obtained by exchanging column k with
column k+2 and exchanging column n+1−k with column n+1−k−2 of W .
We use the notation x to represent n+ 1− x for short and list the elements in
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the columns k, k+ 2, n+ 1− k, n+ 1− k− 2 of B, W and W ∗ in the following
tables, respectively.

B

i\j k k + 1 k + 2 k + 2 k + 1 k
k − 1 m− 2 m− 1 m ∗ ∗ ∗
k m m+ 1 m+ 2 ∗ ∗ ∗

k + 1 m+ 2 m+ 3 m+ 4 ∗ ∗ ∗
k + 1 ∗ ∗ ∗ m− 2 m− 1 m

k ∗ ∗ ∗ m m+ 1 m+ 2

k − 1 ∗ ∗ ∗ m+ 2 m+ 3 m+ 4

W

i\j k k + 1 k + 2 k + 2 k + 1 k
k − 1 0 0 a1,5k+1 0 0 0
k a1,5k 0 a2,5k+1 0 0 0

k + 1 a2,5k 0 0 0 0 0

k + 1 0 0 0 0 0 a1,k+1

k 0 0 0 a1,k 0 a2,k+1

k − 1 0 0 0 a2,k 0 0

W ∗

i\j k k + 1 k + 2 k + 2 k + 1 k
k − 1 a1,5k+1 0 0 0 0 0
k a2,5k+1 0 a1,5k 0 0 0

k + 1 0 0 a2,5k 0 0 0

k + 1 0 0 0 a1,k+1 0 0

k 0 0 0 a2,k+1 0 a1,k
k − 1 0 0 0 0 0 a2,k

Note that a1,5k and a2,k+1 lie in the left diagonal of W , and a2,5k+1 and a1,k
lie in the left diagonal of W ∗. Hence

w∗k,k + w∗
k,k

= wk,k+2 + wk,k+2

= a2,5k+1 + a1,k

= (5k + 1− 1) + (n+ k) = 2n+ 1.

The set of row-sums, column-sums and the right diagonal-sum of W ∗ is the
same as that of W . It follows that W ∗ is a regular SAMS(n, 2). �

Remark 3.2. For any array C = (ci,j)n×n, let Ω(C) = {(i, j) | ci,j 6= 0, i, j ∈
In}. In the proof of Theorem 3.1, we have

Ω(W ) = {(i, j) | bi,j ∈ {m,m+ 2}, i, j ∈ In},
and

Ω(W ∗) ⊂ {(i, j) | bi,j ∈ {m− 2,m,m+ 2,m+ 4}, i, j ∈ In} in Case 2.
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To illustrate the proof of Theorem 3.1, we give an example in the following.

Example 3.3. There exists a regular SAMS(7, 2).

Proof. As in the proof of Theorem 3.1, take n = 7, then m = 3 and m+ 2 = 5.

A =

(
8 9 11 12 13 14 7
1 2 3 10 4 5 6

)
,

B =



2 3 4 5 6 7 1
4 5 6 7 1 2 3
6 7 1 2 3 4 5
1 2 3 4 5 6 7
3 4 5 6 7 1 2
5 6 7 1 2 3 4
7 1 2 3 4 5 6


.

It is readily checked that g(1) = 〈m + 2 − 1〉n = m + 1 = 4, f(3, 4) = 7 and
f(5, 4) = 1 since b7,4 = 3 and b1,4 = 5, then w7,4 = a1,1 = 8 and w1,4 = a2,1 =
1, and so on. We have

W =

7 1
6 14

13 5
12 4

11 10
3 9

8 2

,

where the empty positions of W indicate 0. Clearly, G(W ) = [1, 14] and there
are 2 non-zero elements in each row, each column and each main diagonal of W .
On the other hand, the set of row-sums R(W ) = {8, 20, 18, 16, 21, 12, 10}, the
set of column-sums C(W ) = {14, 13, 22, 9, 17, 11, 19}, l(W ) = 15 and r(W ) =
23. It follows that SW = R(W ) ∪ C(W ) ∪ {l(W ), r(W )} = [8, 23]. So, W is a
regular SAMS(7, 2). �

The following example is very similar to the above, we only list the arrays
A, B, W and W ∗ by using the proof of Theorem 3.1.

Example 3.4. There exists a regular SAMS(11, 2).

Proof. We have m = 5, m+ 2 = 7 and k = 2.

A =

(
12 13 14 15 17 18 19 20 21 22 11
1 2 3 4 5 16 6 7 8 9 10

)
,
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B =



2 3 4 5 6 7 8 9 10 11 1
4 5 6 7 8 9 10 11 1 2 3
6 7 8 9 10 11 1 2 3 4 5
8 9 10 11 1 2 3 4 5 6 7
10 11 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10 11
3 4 5 6 7 8 9 10 11 1 2
5 6 7 8 9 10 11 1 2 3 4
7 8 9 10 11 1 2 3 4 5 6
9 10 11 1 2 3 4 5 6 7 8
11 1 2 3 4 5 6 7 8 9 10


,

W =

11 1
22 10
9 21

20 8
19 7

18 6
17 16

15 5
4 14

13 3
12 2

.

We exchange column 2 with column 4 and column 10 with column 8 of W to
obtain W ∗ as follows.

W ∗ =

11 1
10 22

9 21
20 8

19 7
18 6

17 16
15 5
4 14

3 13
12 2

.

Here, the empty positions of W and W ∗ indicate 0. It is easy to verify that
W ∗ is a regular SAMS(11, 2). �

4. Regular SAMS(n, 4) for n ≥ 5 and n ≡ 1, 5 (mod 6)

In this section, we shall prove that there exists a regular SAMS(n, 4) for
n ≥ 5 and n ≡ 1, 5 (mod 6) by direct construction.

Theorem 4.1. There exists a regular SAMS(n, 4) for any n ≥ 5 and n ≡ 1, 5
(mod 6).

Proof. For n = 5, there exists a regular SAMS(5, 4) by Lemma 1.1.
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We write n ≥ 7 and n ≡ 1, 5 (mod 6) as n = 2m + 1, where m ≥ 3. We
construct a special array A = (ai,j), i ∈ I4, j ∈ In, where

a1,j =

{
2n+ j+1

2 , if j is odd,

2n+m+ 1 + j
2 , if j is even,

a2,j = n+ 2− j,

a3,j =


1, if j = 1,

n+ j+1
2 , if j ≥ 3 is odd,

n+m+ 1 + j
2 , if j is even,

a4,j = 4n+ 1− j.

It is easy to calculate that

A1 =

n⋃
j=1

{a1,j} = [2n+ 1, 3n], A2 =

n⋃
j=1

{a2,j} = [2, n+ 1],

A3 =

n⋃
j=1

{a3,j} = [n+ 2, 2n] ∪ {1}, A4 =

n⋃
j=1

{a4,j} = [3n+ 1, 4n].

Then the set of the elements of A is

G(A) = A1 ∪A2 ∪A3 ∪A4 = [1, 4n].

By a simple calculation, we have

C(A) =

n⋃
j=1

{
4∑
i=1

ai,j}

= {
4∑
i=1

ai,1} ∪

(
m⋃
e=1

{
4∑
i=1

ai,2e+1,

4∑
i=1

ai,2e}

)

= {7n+ 3} ∪

(
m⋃
e=1

{8n+ 3− 2e, 9n+ 4− 2e}

)

= {7n+ 3, 8n+ 1, 9n+ 2} ∪

(
m−1⋃
e=1

{8n+ 1− 2e, 9n+ 2− 2e}

)
,

G3 =

m−1⋃
e=1

{a1,2e−1 + a2,2e + a3,2e+1 + a4,2e+2} =

m−1⋃
e=1

{8n+ 2− 2e},

G4 =

m−1⋃
e=1

{a1,2e + a2,2e+1 + a3,2e+2 + a4,2e+3} =

m−1⋃
e=1

{9n+ 1− 2e},

G5 = {a1,n−2 + a2,n−1 + a3,n + a4,1} = {8n+ 3},
G6 = {a1,n−1 + a2,n + a3,1 + a4,2} = {7n+ 2},
G7 = {a1,n + a2,1 + a3,2 + a4,3} = {9n+ 1}.



CONSTRUCTIONS OF REGULAR SPARSE ANTI-MAGIC SQUARES 631

Denote F (C) = G3 ∪ G4 ∪ G5 ∪ G6 ∪ G7. Then F (C) is the set of forward
diagonal-sums. Clearly,

C(A) ∪G3 ∪G4 ∪G5 ∪G6 ∪G7 = [7n+ 2, 9n+ 2] \ {8n+ 2}.
It follows that C(A) ∪ F (C) = [7n+ 2, 9n+ 2] \ {8n+ 2}.

Let B = (bi,j) = (〈2i+ j−1〉n) be the Latin square of order n over In which
comes from the proof of Theorem 3.1. Define

i = gr(i
′, j′) = 〈i′ − j′ − 1〉n, j = gc(i

′, j′) = 〈2j′ − 3〉n, i′ ∈ I4, j′ ∈ In.
We put the element ai′,j′ of A into the cell (i, j) of B, the other cells of B are all
filled by 0. Then the array is denoted by D = (di,j). The elements in the same
column of A are also in the same column of D since j = gc(i

′, j′) = 〈2j′ − 3〉n,
and the elements in the same forward diagonal of A are also in the same row
of D since

gr(1, j
′) = gr(2, 〈j′ + 1〉n)

= gr(3, 〈j′ + 2〉n)

= gr(4, 〈j′ + 3〉n) = 〈−j′〉n, j′ ∈ In.
Then

G(D) = [1, 4n] and

R(D) ∪ C(D) = C(A) ∪ F (C) = [7n+ 2, 9n+ 2] \ {8n+ 2}.
We also have

bi,j = 〈2i+ j − 1〉n
= 〈2(gr(i

′, j′) + gc(i
′, j′)− 1〉n

= 〈2(i′ − j′ − 1) + (2j′ − 3)− 1〉n
= 〈2i′ − 6〉n, i′ ∈ I4.

It follows that the element ai′,j′ of A is filled into the cell (i, j) of B with
bi,j = n − 4, n − 2, n, 2, respectively. So there are exactly 4 non-zero elements
in each row, each column and each main diagonal of D. Clearly,

gr(4, 1) = 2, gc(4, 1) = n− 1; gr(3, 2) = n, gc(3, 2) = 1;

gr(2, 3) = n− 2, gc(2, 3) = 3; gr(1, 4) = n− 4, gc(1, 4) = 5.

We have

d2,n−1 = a4,1, dn,1 = a3,2, dn−2,3 = a2,3, dn−4,5 = a1,4.

Then it is easy to calculate that the right diagonal-sum of D is

r(D) = d2,n−1 + dn,1 + dn−2,3 + dn−4,5

= a4,1 + a3,2 + a2,3 + a1,4

= 9n+ 3.

Case 1. n ≡ 1 (mod 6) and n ≥ 7.
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We write n = 6k + 1, where k ≥ 1. There are exactly 4 non-zero elements
a1,1, a2,2+4k, a3,2+2k, a4,2 in the left diagonal of D because

gr(1, 1) = gc(1, 1) = n− 1, gr(2, 2 + 4k) = gc(2, 2 + 4k) = 2k,

gr(3, 2 + 2k) = gc(3, 2 + 2k) = 4k + 1, gr(4, 2) = gc(4, 2) = 1.

By a simple calculation,

l(D) = dn−1,n−1 + d2k,2k + d4k+1,4k+1 + d1,1

= a1,1 + a2,2+4k + a3,2+2k + a4,2

= 8n+ 2.

So D is a regular SAMS(n, 4).
Case 2. n ≡ 5 (mod 6) and n ≥ 5.
We write n = 6k + 5, where k ≥ 1. There are exactly 4 non-zero elements

a1,1, a2,2k+3, a3,4k+5, a4,2 in the left diagonal of D because

gr(1, 1) = gc(1, 1) = n− 1, gr(2, 2k + 3) = gc(2, 2k + 3) = 4k + 3;

gr(3, 4k + 5) = gc(3, 4k + 5) = 2k + 2, gr(4, 2) = gc(4, 2) = 1.

By a simple computation,

l(D) = dn−1,n−1 + d4k+3,4k+3 + d2k+2,2k+2 + d1,1

= a1,1 + a2,2k+3 + a3,4k+5 + a4,2

= 8n+ 2.

So D is a regular SAMS(n, 4). �

5. Regular SAMS(n, d) for n ≡ 1, 5 (mod 6) and d ∈ [6, n− 3]

In this section, we shall prove that there exists a regular SAMS(n, d) for
any n ≡ 1, 5 (mod 6) and d ∈ [6, n − 3] by using the arrays B, W and W ∗ in
the proof of Theorem 3.1 and the existence of an SFD(d, n) from Theorem 2.7.
To do this, we also introduce a new concept and some very simple and useful
results in the following.

Definition 5.1. Two m× n arrays M = (mi,j) and N = (ni,j) are compatible
if Ω(M) ∩ Ω(N) = ∅, where Ω(M) = {(i, j) |mi,j 6= 0, i ∈ Im, j ∈ In} and
Ω(N) = {(i, j) |ni,j 6= 0, i ∈ Im, j ∈ In}.

Lemma 5.2. If there exist a regular SMS(n, d1) and an SAMS(n, d2), and they
are compatible, then there exists an SAMS(n, d1 + d2).

Proof. Let M = (mi,j) be a regular SMS(n, d1) over {0, 1, 2, . . . , nd1}, and
N = (ni,j) be an SAMS(n, d2) over {0, 1, 2, . . . , nd2}. Let M ′ = (m′i,j), where

m′i,j =

{
mi,j + nd2, if mi,j 6= 0,
0, if mi,j = 0.

It is readily checked that M ′+N is an SAMS(n, d1+d2) over {0, 1, 2, . . . , n(d1+
d2)}. �
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Lemma 5.3. If there exist an SMS(n, d1) and a regular SAMS(n, d2), and they
are compatible, then there exists an SAMS(n, d1 + d2).

Proof. Let M = (mi,j) be an SMS(n, d1) over {0, 1, 2, . . . , nd1}, and N = (ni,j)
be a regular SAMS(n, d2) over {0, 1, 2, . . . , nd2}. Let N ′ = (n′i,j), where

n′i,j =

{
ni,j + nd1, if ni,j 6= 0,
0, if ni,j = 0.

It is readily checked that M+N ′ is an SAMS(n, d1+d2) over {0, 1, 2, . . . , n(d1+
d2)}. �

Theorem 5.4. If there exist a regular SMS(n, d1) and a regular SAMS(n, d2),
and they are compatible, then there exists a regular SAMS(n, d1 + d2).

Theorem 5.5. If n ≥ 7 and n ≡ 1, 5 (mod 6), then there exists a regular
SAMS(n, d) for d ≡ 0 (mod 2) and d ∈ [6, n− 3].

Proof. For n = 7, there exists a regular SAMS(7, 6) by Lemma 1.1.
For n ≥ 11 and n ≡ 1, 5 (mod 6), let n = 2m + 1, namely, m = n−1

2 . We
write d ≡ 0 (mod 2) and d ∈ [6, n− 3] as d = 2e+ 2, where 2e ∈ [4, n− 5]. By
Theorem 3.1 there exists a regular SAMS(n, 2), W or W ∗. By Theorem 5.4,
to show the conclusion, we need only construct a regular SMS(n, 2e) which is
compatible with the regular SAMS(n, 2).

By Theorem 2.7 there exists an SFD(2e, n) over [2n+ 1, 2n+ 2en], denoted
by C = (ci,j), where i ∈ I2e, j ∈ In. Let Latin square B and f be from the
proof of Theorem 3.1. We put ci,j , i ∈ I2e, j ∈ In, into the cell (f(〈2i′ − 2e−
1 +m〉n, 〈2j +m〉n), 〈2j +m〉n) of B, where

i′ =

{
i, if i ∈ [1, e],
i+ 1, if i ∈ [e+ 1, 2e].

the other cells of B are all filled by 0, we obtained an array D. We shall prove
that D is the desired regular SMS(n, 2e).

Note that we put the elements in the j-th column of C into the 〈2j+m〉n-th
column of D, where j ∈ In and {〈2j+m〉n | j ∈ In} = In, there are 2e non-zero
elements in each column of D and the columns of D will have a constant sum
2e(4n+1+2en)

2 since the columns of C have a constant sum 2e(4n+1+2en)
2 .

For each j1, j2 ∈ In, the elements in the set A1 = {ci,〈i+j1〉n | i ∈ Ie} are filled
into the same row i1(j1) of D and the elements in the set A2 = {ci,〈i+j2〉n | i ∈
I2e \ Ie} are also filled into the same row i2(j2) of D, and it is clear that
A1 ∩ A2 = ∅ and |A1 ∪ A2| = 2e. In fact, the element ci,〈i+j1〉n of A1 is filled
into the f(〈(m+1)−2(e+1)+2i〉n, 〈2〈i+j1〉n+m〉n)-th row of D, the element
ci,〈i+j2〉n ofA2 is filled into the f(〈(m+1)−2(e+1)+2(i+1)〉n, 〈2〈i+j2〉n+m〉n)-
th row of D. Let f(〈(m + 1) − 2(e + 1) + 2i〉n, 〈2〈i + j1〉n + m〉n) = α1 and
f(〈(m + 1) − 2(e + 1) + 2(r + 1)〉n, 〈2〈i + j2〉n + m〉n) = α2, by the definition
of f from the proof of Theorem 3.1, we have

bα1,〈2〈i+j1〉n+m〉n = 〈(m+ 1)− 2(e+ 1) + 2i〉n
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= 〈2α1 + 2(i+ j1) +m− 1〉n,
bα2,〈2〈i+j2〉n+m〉n = 〈(m+ 1)− 2(e+ 1) + 2(i+ 1)〉n

= 〈2α2 + 2(i+ j2) +m− 1〉n.
It follows that

α1 = 〈−j1 − e〉n and {〈−j1 − e〉n | j1 ∈ In} = In when i ∈ Ie,
and

α2 = 〈−j2 − e+ 1〉n and {〈−j2 − e+ 1〉n | j2 ∈ In} = In when i ∈ In \ Ie,
which are both independent of the parameter i. Note that j2 = j1 + 1 when
α1 = α2, that is, the elements in the same forward diagonal of C aren’t filled
into the same row of D. But this implies that the elements in the set A1 and
A2 lie in the same row i1(j1) and i2(j2) of D, respectively, where i1(j1) and
i2(j2) are both bijections over In since {〈2〈i + jσ〉n + m〉n | jσ ∈ In} = In,
σ = 1, 2, and B is a Latin square. Then the rows of D will also have a constant

sum 2e(4n+1+2en)
2 by the property

e∑
i=1

ci,〈i+j1〉n +

2e∑
i=e+1

ci,〈i+j2〉n =
2e(4n+ 1 + 2en)

2

mentioned in Remark 2.8.
Let

∆ = {2i′ − 2e− 1 +m | i ∈ I2e}
= {2i− 2e− 1 +m | i ∈ Ie} ∪ {2i− 2e+ 1 +m | i ∈ [e+ 1, 2e]}.

Clearly |∆| = 2e. It is easy to check that there are exactly 2e non-zero elements
in each main diagonal of D since B is a diagonal Latin square and for i1, j1 ∈ In,{

di1,j1 = 0, if bi1,j1 6∈ ∆,
di1,j1 6= 0, if bi1,j1 ∈ ∆.

Now we compute the main diagonal-sum of D. For i ∈ Ie, j ∈ In, the elements
ci,j and c2e+1−i,n+1−j are filled into the cells (f(〈2i − 2e − 1 + m〉n, 〈2j +
m〉n), 〈2j+m〉n) and (f(〈2(2e+1−i+1)−2e−1+m〉n, 〈2(n+1−j)+m〉n), 〈2(n+
1− j) +m〉n) of B, respectively. Let f(〈2i− 2e− 1 +m〉n, 〈2j +m〉n) = θ. We
have

bθ,〈2j+m〉n = 〈2θ + (〈2j +m〉n) + 1〉n = 〈2i− 2e− 1 +m〉n.
By the property of the Latin square B mentioned in the proof of Theorem 3.1,
we obtain

bn+1−θ,n+1−〈2j+m〉n = (n+ 1)− bθ,〈2j+m〉n
= (n+ 1)− 〈(2i− 2e− 1 +m)〉n.

It is easy to compute that

〈2(2e+ 1− i+ 1)− 2e− 1 +m〉n = 〈(n+ 1)− (2i− 2e− 1 +m)〉n,
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〈2(n+ 1− j) +m〉n = (n+ 1)− 〈2j +m〉n.
Therefore,

f(〈2(2e+ 1− i+ 1)− 2e− 1 +m〉n, 〈2(n+ 1− j) +m〉n)

= f(〈(n+ 1)− (2i− 2e− 1 +m)〉n, (n+ 1)− 〈(2j +m)〉n)

= (n+ 1)− θ.
It follows that for i ∈ Ie, j ∈ In, ci,j and c2e+1−i,n+1−j are filled into the cells
(θ, 〈2j +m〉n) and (n+ 1− θ, n+ 1− 〈2j +m〉n) of B, respectively. It is easy
to see that

dθ,〈2j+m〉n + dn+1−θ,n+1−〈2j+m〉n = ci,j + c2e+1−i,n+1−j

= 4n+ 1 + 2en.

Then the sum of elements in each diagonal of D is also a constant sum

2e(4n+ 1 + 2en)

2

since there are exactly 2e non-zero elements in each diagonals. It follows that
D is a regular SMS(n, 2e).

Next, we shall show that D is compatible with the regular SAMS(n, 2) con-
structed from Theorem 3.1. Denote

Ω(D) = {(i, j) | di,j 6= 0, i, j ∈ In}

= {(x, y) | bx,y ∈
2e⋃
i=1

{〈2i′ − 2e− 1 +m〉n}, x, y ∈ In}.

Clearly e ≤ m − 2 since d = 2e + 2 ≤ n − 3 = (2m + 1) − 3. So it is easy to
verify that

{m− 2,m,m+ 2,m+ 4} ∩ {〈2i′ − 2e− 1 +m〉n | i ∈ I2e} = ∅.
It follows that

{(x, y) | bx,y ∈ {m− 2,m,m+ 2,m+ 4}} ∩ Ω(D) = ∅.
Let W and W ∗ be from the proof of Theorem 3.1, that is, W is an SAMS(n, 2)
for n ≡ 1 (mod 6) and W ∗ is an SAMS(n, 2) for n ≡ 5 (mod 6). By Remark
3.2,

Ω(W ) = {(i, j) | bi,j ∈ {m,m+ 2}, i, j ∈ In}
and

Ω(W ∗) ⊂ {(i, j) | bi,j ∈ {m− 2,m,m+ 2,m+ 4}, i, j ∈ In}.
We have Ω(W ) ∩ Ω(D) = ∅ and Ω(W ∗) ∩ Ω(D) = ∅. It follows that W and D
are compatible, and W ∗ and D are compatible. So D + W and D + W ∗ are
the desired regular SAMS(n, d)s by Theorem 5.4. �

To illustrate the proof of Theorem 5.5, we give an example in the following.

Example 5.6. There exists a regular SAMS(11, 8).
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Proof. Let n = 2m + 1 = 11 and d = 2e + 2 = 8. Clearly m = 5 and 2e = 6.
We construct an SFD(6, 11) over [1, 66] as follows.

C ′ =

 11 5 10 4 9 3 8 2 7 1 6
1 2 3 4 5 6 7 8 9 10 11
6 11 5 10 4 9 3 8 2 7 1
11 5 10 4 9 3 8 2 7 1 6
1 2 3 4 5 6 7 8 9 10 11
6 11 5 10 4 9 3 8 2 7 1

+ 11

 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5


=

 11 5 10 4 9 3 8 2 7 1 6
12 13 14 15 16 17 18 19 20 21 22
28 33 27 32 26 31 25 30 24 29 23
44 38 43 37 42 36 41 35 40 34 39
45 46 47 48 49 50 51 52 53 54 55
61 66 60 65 59 64 58 63 57 62 56

.
Then an SFD(6, 11) over [23, 88], C, is obtained in the following.

C = C ′ +

 22 22 22 22 22 22 22 22 22 22 22
22 22 22 22 22 22 22 22 22 22 22
22 22 22 22 22 22 22 22 22 22 22
22 22 22 22 22 22 22 22 22 22 22
22 22 22 22 22 22 22 22 22 22 22
22 22 22 22 22 22 22 22 22 22 22


=

 33 27 32 26 31 25 30 24 29 23 28
34 35 36 37 38 39 40 41 42 43 44
50 55 49 54 48 53 47 52 46 51 45
66 60 65 59 64 58 63 57 62 56 61
67 68 69 70 71 72 73 74 75 76 77
83 88 82 87 81 86 80 85 79 84 78

.
The arrays B and D are listed below as in the proof of Theorem 5.5 and W ∗

comes from Example 3.4.

B =

2 3 4 5 6 7 8 9 10 11 1
4 5 6 7 8 9 10 11 1 2 3
6 7 8 9 10 11 1 2 3 4 5
8 9 10 11 1 2 3 4 5 6 7
10 11 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10 11
3 4 5 6 7 8 9 10 11 1 2
5 6 7 8 9 10 11 1 2 3 4
7 8 9 10 11 1 2 3 4 5 6
9 10 11 1 2 3 4 5 6 7 8

11 1 2 3 4 5 6 7 8 9 10

,

D =

42 51 66 68 24 82
46 61 67 30 88 41

56 77 25 83 40 52
62 76 31 78 39 47
75 26 84 38 53 57
79 37 48 63 74 32

54 58 73 27 85 36
64 72 33 80 35 49

59 71 28 86 34 55
70 23 81 44 50 65

29 87 43 45 60 69

,
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W ∗ =

11 1
10 22

9 21
20 8

19 7
18 6

17 16
15 5
4 14

3 13
12 2

,

D +W ∗ =

42 11 51 1 66 68 24 82
46 10 22 61 67 30 88 41

56 9 77 25 83 40 52 21
62 76 31 78 39 47 20 8
75 26 84 38 53 19 7 57
79 37 48 18 6 63 74 32

54 17 16 58 73 27 85 36
15 5 64 72 33 80 35 49
4 59 71 28 86 34 14 55

70 23 81 44 50 3 13 65
29 87 43 45 12 60 2 69

.

Here, all of above empty positions indicate 0. It is easy to check that D +W ∗

is a regular SAMS(11, 8). �

Theorem 5.7. If n ≡ 1, 5 (mod 6) and n ≥ 11, then there exists a regular
SAMS(n, d) for d ≡ 1 (mod 2) and d ∈ [6, n− 3].

Proof. We write d ≡ 1 (mod 2) and d ∈ [6, n − 3] as d = (2e + 1) + 2, where
2e + 1 ∈ [4, n − 5], and m = n−1

2 . By Theorem 3.1 there exists a regular
SAMS(n, 2), W or W ∗. By Theorem 5.4, to show the conclusion, we need
only construct a regular SMS(n, 2e+ 1), which is compatible with the regular
SAMS(n, 2).

By Theorem 2.7 there exists an SFD(2e+ 1, n) over [2n+ 1, 2n+ (2e+ 1)n],
denoted by C = (ci,j), where i ∈ I2e+1, j ∈ In. Let Latin square B and f be
from the proof of Theorem 3.1. We put ci,j , i ∈ I2e+1, j ∈ In, into the cell
(f(〈2i − 2e − 1 + m〉n, 〈2j + m〉n), 〈2j + m〉n) of B, the other cells of B are
all filled by 0, we obtained an array D. We shall prove that D is the desired
regular SMS(n, 2e+ 1).

Note that we put the elements in the j-th column of C into the 〈2j+m〉n-th
column of D, where j ∈ In and {〈2j +m〉n | j ∈ In} = In. Therefore there are
2e+1 non-zero elements in each column of D and the columns of D will have a
constant sum (2e+1)[4n+1+(2e+1)n]

2 since the columns of C have a constant sum
(2e+1)[4n+1+(2e+1)n]

2 .
For each j ∈ In, the elements in the set A = {ci,〈i+j〉n | i ∈ I2e+1} are filled

into the same row of D. It is clear that |A| = 2e+1 and the elements in the set
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A are exactly in the same froward diagonal of C. In fact, the element ci,〈i+j〉n
is filled into the f(〈(m + 1) − 2(e + 1) + 2i〉n, 〈2〈i + j〉n + m〉n)-th row of D.
Let f(〈(m+ 1)− 2(e+ 1) + 2i〉n, 〈2〈i+ j〉n +m〉n) = α, we have

bα,〈2〈i+j〉n+m〉n = 〈(m+ 1)− 2(e+ 1) + 2i〉n
= 〈2α+ 2(i+ j) +m− 1〉n.

It follows that α = 〈−j−e〉n and {〈−j−e〉n | j ∈ In} = In, which is independent
of the parameter i. This implies that the elements in the set A = {ci,〈i+j〉n | i ∈
I2e+1} lie in the same row α ofD. So all forward diagonals of C become the rows

of D. Then the rows of D will also have a constant sum (2e+1)[4n+1+(2e+1)n]
2

since all forward diagonals of C have the same sum (2e+1)[4n+1+(2e+1)n]
2 .

Let ∆ = {2i − 2e − 1 + m | i ∈ I2e+1}. Clearly |∆| = 2e + 1. It is easy to
check that there are exactly 2e+ 1 non-zero elements in each main diagonal of
D since B is a diagonal Latin square and for i1, j1 ∈ In,{

di1,j1 = 0, if bi1,j1 6∈ ∆,
di1,j1 6= 0, if bi1,j1 ∈ ∆.

Now we compute the main diagonal-sum of D. We have dm+1,m+1 = ce+1,m+1

= 1+(2e+1)n
2 + 2n because the element ce+1,m+1 is filled into the cell

(f(〈2(e+ 1)− 2e− 1 +m〉n, 〈2(m+ 1) +m〉n), 〈2(m+ 1) +m〉n)

= (f(m+ 1,m+ 1),m+ 1)

= (m+ 1,m+ 1)

of D. It follows that the sum of elements in each diagonal of D is also a constant

sum (2e+1)[4n+1+(2e+1)n]
2 .

Denote

Ω(D) = {(i, j) | di,j 6= 0, i, j ∈ In}
= {(f(〈2i− 2e− 1 +m〉n, 〈2j +m〉n), 〈2j +m〉n) | i ∈ I2e+1, j ∈ In}

= {(x, y | bx,y ∈
2e+1⋃
i=1

{〈2i− 2e− 1 +m〉n}, x, y ∈ In}.

Clearly b 2e+1
2 c = e ≤ m−2 since d = (2e+1)+2 ≤ n−3 = (2m+1)−3 = 2m−2.

So it is easy to verify that

{m− 2,m,m+ 2,m+ 4} ∩ {〈2i− 2e− 1 +m〉n | i ∈ I2e+1} = ∅.
It follows that

{(x, y) | bx,y ∈ {m− 2,m,m+ 2,m+ 4}} ∩ Ω(D) = ∅.
Let W and W ∗ from the proof of Theorem 3.1. By Remark 3.2, we have
Ω(W ) = {(i, j) | bi,j ∈ {m,m+ 2}, i, j ∈ In} and Ω(W ∗) ⊂ {(i, j) | bi,j ∈ {m−
2,m,m+2,m+4}, i, j ∈ In}. Then Ω(W )∩Ω(D) = ∅ and Ω(W ∗)∩Ω(D) = ∅.
It follows that W and D are compatible, and W ∗ and D are compatible. So
D +W and D +W ∗ are the regular SAMS(n, d)s by Theorem 5.4. �
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To illustrate the proof of Theorem 5.7, we give an example in the following.

Example 5.8. There exists a regular SAMS(13, 9).

Proof. Let n = 2m + 1 = 13 and d = (2e + 1) + 2 = 9. Clearly m = 6 and
2e+ 1 = 7. We construct an SFD(7, 13) over [1, 91] as follows.

C ′ =


1 2 3 4 5 6 8 9 10 11 12 13 7
7 13 12 11 10 9 8 6 5 4 3 2 1
13 6 12 5 11 4 10 3 9 2 8 1 7
1 2 3 4 5 6 7 8 9 10 11 12 13
7 13 6 12 5 11 4 10 3 9 2 8 1
13 12 11 10 9 8 6 5 4 3 2 1 7
7 1 2 3 4 5 6 8 9 10 11 12 13

+ 13


0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 6 6 6


=


1 2 3 4 5 6 8 9 10 11 12 13 7
20 26 25 24 23 22 21 19 18 17 16 15 14
39 32 38 31 37 30 36 29 35 28 34 27 33
40 41 42 43 44 45 46 47 48 49 50 51 52
59 65 58 64 57 63 56 62 55 61 54 60 53
78 77 76 75 74 73 71 70 69 68 67 66 72
85 79 80 81 82 83 84 86 87 88 89 90 91

.
Then an SFD(7, 13) over [27, 117], C, is obtained in the following.

C =


27 28 29 30 31 32 34 35 36 37 38 39 33
46 52 51 50 49 48 47 45 44 43 42 41 40
65 58 64 57 63 56 62 55 61 54 60 53 59
66 67 68 69 70 71 72 73 74 75 76 77 78
85 91 84 90 83 89 82 88 81 87 80 86 79
104 103 102 101 100 99 97 96 95 94 93 92 98
111 105 106 107 108 109 110 112 113 114 115 116 117

.
The arrays D and W are listed below as in the proof of Theorem 5.7 and
Theorem 3.1, respectively.

D =

42 53 78 85 103 106 37
60 77 79 104 105 36 43
76 86 98 111 35 44 54
80 92 117 34 45 61 75
93 116 32 47 55 74 87
115 31 48 62 73 81 94

30 49 56 72 88 95 114
50 63 71 82 96 113 29
57 70 89 97 112 28 51
69 83 99 110 27 52 64
90 100 109 33 46 58 68
101 108 39 40 65 67 84
107 38 41 59 66 91 102

,

W =

13 1
26 12

25 11
10 24

23 9
22 8

21 7
20 19

18 6
5 17

16 4
15 3

14 2

,
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D +W =

42 53 13 78 1 85 103 106 37
60 26 77 12 79 104 105 36 43

25 76 11 86 98 111 35 44 54
10 80 92 117 34 45 61 24 75

93 116 32 47 55 23 74 9 87
115 31 48 62 22 73 8 81 94

30 49 56 21 72 7 88 95 114
50 63 20 71 19 82 96 113 29
57 18 70 6 89 97 112 28 51
69 5 83 99 110 27 52 64 17
90 100 109 33 46 58 16 68 4
101 108 39 40 65 15 67 3 84
107 38 41 59 14 66 2 91 102

.

It is straightforward to verify that D +W is a regular SAMS(13, 9). �

6. Concluding remarks

We first give the proof of Theorem 1.4, restated in Theorem 6.1 for conve-
nience.

Theorem 6.1. Suppose that n is a positive integer satisfying n ≥ 5 and n ≡ 1,
5 (mod 6). Then there exists a regular SAMS(n, d) for any d with 2 ≤ d ≤ n−1.

Proof. For d = 2, 4, there exists a regular SAMS(n, d) by Theorem 3.1 and
Theorem 4.1, respectively.

For d ∈ {3, 5}, there exists a regular SAMS(n, d) by Lemma 1.3.
For d ∈ [6, n− 3], there exists a regular SAMS(n, d) by Theorems 5.5-5.7.
For d ∈ {n − 1, n − 2}, there exists a regular SAMS(n, d) by Lemmas 1.1-

1.2. �

In the present paper, we proved that there exists a regular SAMS(n, d) for
any n ≥ 5, n ≡ 1, 5 (mod 6) and d with 2 ≤ d ≤ n − 1. Quite recently, we
obtained the existence of a regular SAMS(n, d) for any n ≥ 5, n ≡ 3 (mod 6)
and d with 2 ≤ d ≤ n− 1 listed below.

Theorem 6.2 ([9], Theorem 1.6). Suppose that n is a positive integer satisfying
n ≥ 9 and n ≡ 3 (mod 6). Then there exists a regular SAMS(n, d) for any d
with 2 ≤ d ≤ n− 1.

However, there are still unsolved cases in the existence question for regular
SAMS. For ease of reference, we state this as an open problem.

Problem 6.1. Construct a regular SAMS(n, d) for any n ≥ 4, n ≡ 0 (mod 2)
and d with 2 ≤ d ≤ n− 1.
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