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ABSTRACT. A simple but elegant result of Rival states that every sublattice L of a finite
distributive lattice P can be constructed from P by removing a particular family J, of its
irreducible intervals.

Applying this in the case that P is a product of a finite set € of chains, we get a
one-to-one correspondence L — Dy (L) between the sublattices of P and the preorders
spanned by a canonical sublattice C° of P.

We then show that L is a tight sublattice of the product of chains P if and only if Dy (L)
is asymmetric. This yields a one-to-one correspondence between the tight sublattices of P
and the posets spanned by its poset J(P) of non-zero join-irreducible elements.

With this we recover and extend, among other classical results, the correspondence
derived from results of Birkhoff and Dilworth, between the tight embeddings of a finite
distributive lattice L into products of chains, and the chain decompositions of its poset
J(L) of non-zero join-irreducible elements.

1. Introduction

All lattices considered in this paper are finite and distributive. For very basic
notation, definitions, and concepts we refer the reader to [4]; many basic definitions
are also given at the start of Section 2.

Classical results of Birkhoff and Dilworth, which we review in more detail in
Section 2, show that any finite distributive lattice L can be embedded, as a sub-
lattice, into a product of chains. They further yield a one-to-one correspondence
(Corollary 2.5) between the tight such embeddings and chain decompositions of the
poset J(L) of non-zero irreducible elements of L.

Our main goal in this paper is to reverse the point of view of this correspondence:
instead of cataloguing the various embeddings of a particular lattice L into products
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P J(P) J(L)

Figure 1: Product of chains P, sublattice L, and their posets J(P) and J(L)

of chains, we catalogue the various sublattices of a given product P of chains.

Starting with the product P =[], C of a set € of chains, J(P) is the parallel
sum of the chains we get from the chains of € by removing their minimum elements.
One main idea is that, for a tight sublattice L of P, J(L) is isomorphic to an
extension of J(P). See Figure 1 for an example. If we consider only tight sublattices
of P, this is the whole picture: in Remark 4.4, we observe that L — J(L) gives a
one-to-one correspondence between the tight sublattices of P and the spanned poset
extensions of J(P)- extensions with the same set of elements as J(P).

But what if we consider non-tight embeddings/sublattices? One can see two
examples of non-tight embeddings in the bottom half of Figure 2. As every lattice
has a tight embedding into products of chains, non-tight embeddings are seldom
considered. However, when we look to catalogue the sublattices of given product
of chains, it is natural to consider them. In the paper [9], out of which this paper
grew, we found it useful to consider non-tight sublattices of products of chains. We
needed a characterisation of all sublattices of a product of chains.

In Section 3, we use a result of Rival [8] which characterises the sublattices of
P, to construct, for each sublattice of P, a preorder (reflexive transitive relation)
Dy (L) which contains J(P). In fact, Dp(L) is a refinement of the poset €° that we
get from J(P) by appending a new zero and unit.

This preorder is an analogue of J(L) in the sense that our main theorem, The-
orem 4.1 is an analogue of Theorem 2.1, representing L as the appropriatly defined
lattice of ‘downsets’ of Dp(L). Using this, we prove Corollary 4.2 in Section 4, and
so acheive our main goal of cataloguing the sublattices of P, by giving a correspon-
dence between them and the so-called spanned preorder extensions of C°. Results
similar to those is this section can by found with a different presentation in the
recent article [7] of Retakh and Saks .

In Section 5, we return to the point of view of embeddings of a given lattice,
and extend Birkhoff’s classical correspondence between the tight embeddings of a
lattice L into products of chains and the chain decompositions of J(L). Birkhoff’s
correspondence is categorical, and so is our extension, extending the correspondence
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between morphisms, but we avoid talk of categories. We get, in Theorem 5.3, a one-
to-one correspondence between embeddings of a lattice L into products of chains,
and ‘pointed chain covers’ of an extension J°(L) of J(L). Similar results can by
found with a different presentation in the recent article [7].

In [5], Koh used a clever construction to show that any distributive lattice L
can be represented as the lattice Ay, (P) of maximal antichains of some poset P.
We finish off, in Section 6, by showing that his construction arises naturally from
our point of view, and extend it to determine, in Corollary 6.12, all posets P such
that L = A, (P) for a given L.

2. Notation and Background

A lattice embedding e : L — L' is a {0, 1}-embedding if it preserves the zero and
unit elements: e(0r) = 0rs and e(1r) = 1. It is tight if it is a {0, 1}-embedding
and preserves covers: x < y implies that e(z) < e(y). An element x of a lattice
L is join-irreducible if x = a V b implies that * = a or z = b. Meet-irreducible
elements are defined analogously. The set of non-zero join-irreducible elements of
L is denoted J(L). It induces a subposet of L which is also denoted by J(L). For
a subset S of a lattice L, we let \/ .S = \/_ sz be the join of the elements of 5. We
often write \/; S to specify that the join takes place in L. A subset S of a poset
is a downset or ideal if x € S and y < x implies y € S. The minimum downset
containing an element z is denoted (x]. A chain C of length n in a poset P is
subposet isomorphic to the linear order Z,; on the n + 1 elements {0,1,...,n}.
A chain decomposition of a poset P is a partition of its elements into a family €
of chains C1,...,Cy. For a family € = {C,...,Cy4} of disjoint chains, the product
[1¢ = Hle C; consists of all d-tuples = (x1,...,24) where z; € C; for each
i € [d]. It is ordered by x < y if x; < y; for each .

In his famous representation theorem in [1], Birkhoff showed that L = D(J(L))
where D(P), for a poset P, is the family of downsets of P ordered by inclusion.
Specifically, he showed the following.

Theorem 2.1.([1]) Let L be a finite distributive lattice. The map
S: L—DJ(L)): z+— {(z]NJ(L)
is a lattice isomorphism. Its inverse is S +— \/ S.

Observing that a downset in D(P) is join-irreducible if and only if it has a
unique maximal element, one can easily show that J(D(P)) — P : (z] — z is an
isomorphism. Thus P = @ if D(P) = D(Q). This immediatly yields a one-to-one
correspondence, L — J(L), between finite distributive lattices and finite posets.

For a chain decomposition € of a poset let Gy be the family of chains we get
from the chains in € by adding a new minimum element to each. In [2], Dilworth
proved the following embedding theorem.

Theorem 2.2.([2]) For any chain decomposition C of a poset P the map S — \/5 S
is an embedding of D(P) into P =[] Co.
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With Theorem 2.1, this immediately gives the following.
Corollary 2.3. For any decomposition C of J(L) into chains, the map

e@:L—>H€0:xb—>\/TS(x)

is an embedding of L into P =[] Co.

In [6], Larson makes explicit a converse to Corollary 2.3, showing essentially the
following.

Theorem 2.4.([6]) The embeddings ee of Corollary 2.3 are tight, and for every
tight embedding e there is a chain decomposition C of J(L) such that e = ee.

It is a trivial observation that different chain decompositions of J(L) yield
different embeddings of L into products of chains, so with Corollary 2.3, this yields
the following correspondence.

Corollary 2.5. Let L be a finite distributive lattice. The map C+— ee is a one-to-
one correspondence between the chain decompositions of J(L) and the tight embed-
dings of L into products of chains.

3. The Rival Construction Dy (L)

Recalling a result of Rival in the first subsection, we use it in the second sub-
section to construct the preorder Dy (L) and the appropriate notion of a downset
lattice. We then give an immediate restatement of Theorem 2.1 in terms of our
new definitions. This will be a special case of our main theorem, which will be put
off until the next section. In the third subsection, we look at some examples to try
to give intuition to the construction. In the fourth subsection, we clean up some
technical details of the construction.

3.1. Rival’s Theorem

An irreducible interval of a lattice L is the set [a, 5] = {z € L | a <z < g} for
any join-irreducible element o of L and any meet-irreducible element 3. For a set
J of irreducible intervals of L we let (JJ = (J;cqI. The set J is closed if I C |JJ
implies I € J. The key to our results is the following theorem of Rival.

Theorem 3.1.([8]) If L is a sublattice of a finite distributive lattice L', then
L=L\]JJ
for some (closed) family J of irreducible intervals of L'.

3.2. Setup and The Definition of Dy (L)

For the rest of the paper P is always a product P = [[ € of finite chains C =
{C1,...,Cq}. We will denote the elements of a chain C; by integers, so that o+ 1
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will denote the cover of an element « in Cj; but we still refer to the maximum
element of C; as 1¢,. The subscript differentiates it from the element 1 that is
occasionally used in examples to label the first or second element of a chain. We
let 0 = (0¢,,...,0¢,) and 1 = (1¢,,...,1¢,) denote the zero and unit of P. When
L is a sublattice of P, Theorem 3.1 yields a unique closed family J; such that
L =2?\JIJ.. The join-irreducible elements of P are clearly of the form

oy = (Oz)l = (00150027'"7OC¢7170‘7OCH1"'-’0C})

for i € [d] and « € C; and the meet-irreducible elements are

ﬂj = (/6)‘7 = (]‘01’1027"'710‘7'717/8710]'4»17"'710(1)

for j € [d] and 8 € Cj. We generally use the notation a; and 37 but add the
parentheses when needed for clarity, in particular, we do this when a has or
has a subscript. The irreducible intervals of P are exactly the intervals [a;, 37] for
i,j € [d], « € C;, and € C}, where a < # if i = j. Though an empty set is not
technically an interval of a poset, it will be useful to consider the empty set [a;, 3],
when « > 3, as an irreducible interval of P.

Given C and P =[] G, let €° = J°(P) be the subposet of P induced by J(P) U
{0,1}. Occasionally, in arguments, we will let (« + 1); refer to 1 when o = 1¢,.
This is consistant with viewing 1 as a new unit of C;. Dually, we will occasionally
let (B8 — 1)7 refer to 0 when 8 = Oc,. These shortcuts will help us avoid having to
deal seperately with the extremal cases of o and [ in arguments.

Recall that a poset, and in particular €°, is a reflexive relation. We refer to a
reflexive relation simply as a reflexive digraph, and view posets as reflexive digraphs,
saying (z,y) is an are, or writing x — gy, to mean x < y. A spanned extension of C°
is any digraph on the elements of C°, which contains it. A preorder is a transitive
reflexive digraph.

The following is our extension of J(L), we chose to label it with a D rather
than a J to emphasise the fact that it is a digraph, and not necessarily a poset.

Definition 3.2.(D(J) and Dy (L)) For any family € = {C4,...,Cy4} of chains and
any family of irreducible intervals J of P =[] €, let D»(J) be the spanned extension
of C° that we get from C° by letting (8 + 1); — «; for each [a;, 3] € J. For a
sublattice L of P, let Dp(L) = Dp(Jp,).

An (x,y)-path vi = va — -+ — v, in a digraph D is a sequence of elements
* = v1,v9,...,v¢ =y such that v; — v;41 for each 7. The following is a straight-
forward extension, to digraphs, of the definition of downset of a poset.

Definition 3.3. A subset S C D of vertices of a digraph D is a downset (or an
initial set) if for all y in S and all (z,y)-paths in D, x is also in S. A downset set S
of D is a non-trivial downset if it is a non-empty proper subset of D. For a vertex
x of D let (x] be the smallest downset of D containing x.
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Definition 3.4.(D(D) and D, (D)) For any digraph D, let D(D) be the family
of downsets of D ordered by inclusion, and D,(D) be the subfamily of non-trivial
downsets.

As with posets, it is clear for digraphs that unions and intersections of downsets
are downsets, so D¢ (D) is indeed a poset for any digraph D. In our main theorem
we will see that D, (D) is, in fact, the lattice L when D is the spanned extension
Dyp(L) of €C°.

For a poset P let P¥ be the poset we get from P by adding a new minimum
element and let P° be the poset we get from P¥ by adding a new maximum element.
It has been observed in several places, (see, for example, [6]), that

(3.1) Dut(P°) = D(P).

~

Indeed, the isomorphism is the map that drops the appended unit. As D(P)
D(P’) implies P = P’ we have

(3.2) D (P°) =2 D (Q°) = P° =2 Q°.

With (3.1), the following base case of our main theorem is immediate from
Theorem 2.1. It will also be clear from the top example in Figure 2 of the next
subsection.

Lemma 3.5. Where P is a product of chains, the map
T:P— Dy(C%) iz (z]NECY

is an isomorphism. Its inverse is S — \/5 S.

Proof. Indeed P is a lattice, so we may apply Theorem 2.1, and then (3.1), to get
the isomorphism

P = D(J(P)) 2 D (J°(P)) = D (€°). O

Before we prove our main theorem, that T is an isomorphism from L to Dy (Dgp (L))
for any sublattice of P, we will need, in Proposition 3.7 to show that because Jy, is
closed, Dy (L) is a preorder.

First though, let’s explain our definition of Dy (L) with a couple of examples.

3.3. Some Examples

A directed graph that extends a poset can be depicted by adding arcs to the
Hasse diagram of the poset, though direction must be made explicit on these arcs,
as they need not all go up. As the digraphs Dy (L) that we depict thus will be
preorders, so transitive, we maintain the convention of not drawing the transitively
impied arcs.

The top half of Figure 2 shows the same lattices P = Z5 x Zg and L; = P\[39,2}]
as are shown in Figure 1, but now, instead of J(P) and J(L1), it shows with them
the digraph C° and its spanned extension Dp(L1).
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Figure 2: Sublattices of P = Z5 x Zg and their digraphs Dy
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The construction of Dp(L) arises from observing what we must do to C° so that
T remains an isomorphism when we remove some irreducible interval [a;, 37] from
P. Referring to the second example in Figure 2, when we remove [35,2!] from P,
we see that we should add the 35 > 37 to €° to maintain the isomorphism. Indeed,
this ensures that, for example, the set T((2,3)) = {21, 11,0, 12, 22,32} is no longer
a downset. In general it ‘kills’ any downset S containing 32 but not 3;. These are
exactly the downsets T(z) for x € [32,2!].

The third example in the figure shows a non-tight sublattice Ly of P, observe
that the corresponding extension Dy (Ls) of €° is not a poset. The fourth example
exhibits the necessity of 0 and 1 in Dsp.

3.4. The Closure of J and Transitivity of D4 (J)

In this subsection we show that D (J) is closed if and only if J is transitive. It
is a pretty intuitive notion, but we prove it via a technical lemma that we be quite
useful later.

Recall that we included the empty intervals of the form [a;, %], where o > 3,
as irreducible intervals of P = [] €. By definition then, these are thus contained in
any closed family J of irreducible intervals. This is consistant with D (J) containing
C°. In particular, we assume for any sublattice L of P that the closed family Jp
such that L = P\ JJ,, provided by Theorem 3.1, contains these elements.

Now our technical lemma.

Lemma 3.6. Let D = Dy (J) for some sublattice L = P\ |JJ of P = [[C. The
following are equivalent for o € C; € € and 3 € C; € C.

(i) [ai, 7] CUT.
(i) Forallz € L, x; > o= x; > f.
(iii) There is a ((8+ 1);, ou)-path in D.

Proof. The equivalence of (i) and (ii) is immediate as both are equivalent to the
statement that there are no elements x € L with a < z; and z; < 3. So we show
the equivalence of (ii) and (iii).

On the one hand, consider an ((8+1)s,, (a1)s, )-path in D. As J is assumed to
contain all empty intervals, we can write this as

(5 + 1)81 = (aZ)Sﬁ. o (042)52 - (al)sl‘

By the definition of D this means that [(a;), ,(ait1 — 1)*+1] € J for each
i. Let # € L be such that z;, > ay. By the equivalence of (i) and (ii) this
implies x5, > ag — 1, which in turn implies z,, > as — 1, etc., until we get that
s, > o — 1 =3, as needed.

On the other hand, assume that there is no such path from (ag)s, to (a1)s,-
We will find z in L with x5, > o and x5, < ay = 8+ 1. Indeed, for k € [d] let x4
be the maximum value for which there is a path in D from (zj)x to (a1)s,. If no
such path exists, let z be 0. Clearly x5, > a1, and by the assumption that there
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is no path from (ag)s, to (a1)s, we have that x5, < ay. We have just to show that
x isin L.

If z is not in L, then it is in some [(«);, (B)7] € J. As [(«);, (8)’] € J, we have
that (8+1); = (a); isin D. As z € [(@);, (8)7], we have that o < z; and z; < 3.
Now by the choice of z, o < z; implies that there is an path from (a); to (a1)s,, so
the arc ((8+1);, (@);) gives us a path from (8;+1); to (a1)s,. But then 8;+1 < x;
which contradicts ; < 3;. a

As Iy, is closed, the following proposition allows us to assume that the digraph
Dy (L), for any sublattice L of P, is a preorder.

Proposition 3.7. Let D = D3 (J) for some sublattice P\N|JJ of P. Then J is closed
if and only if D is transitive.

Proof. On the one hand, assume that J is closed. Then we can replace (i) of Lemma
3.6 with [a;, 7] € J. Now that v, — B; and 3; — «; in D gives, by Lemma 3.6,
that [, ¥*] € J which means 7, — «; in D. So D is transitive.

On the other hand, assume that J is not closed. Then there is some [a;, 37] in
UJ but not in J. So there is a (a;, 37)-path in D, while (o, 87) is not in D. O

4. Main Results

In this section we give our main results corresponding the sublattices of product
P =] € of chains to the spanned preorder extensions of C*. In the first subsection,
we give our main theorem, extending Birkhoff’s representation theorem from J(L) to
the more general construction Dy (L). In the second subsection, we explicitly state
the one-to-one correspondence. In the final subsection, we classify the sublattices
of P in terms of the properties of the corresponding preorder extensions.

4.1. Main Theorem
Generalising Theorem 2.1 we have the following.

Theorem 4.1. Let L be a sublattice of a product P = [[C of chains, and let
D = Dyp(L). The map

T:L— Dy(D):z— (z]NEC°

is a lattice isomorphism. Its inverse is S — \/5 S.

Proof. As it simplifies induction, we prove the slightly more general result that T
is an isomorphism for D = D4 (J) where J is any family of irreducible intervals of P
such that L = P\ |JJ. In the case that J is empty, or contains only empty families,
we have L = P and D = €°, so the isomorphism is given in Lemma 3.5.

In the general case, we first observe that D, (D) is a subposet of P = D, (C?).
Indeed, as D ia a spanned extension of C°, any downset of D is a downset of C°,
50 Dyt(D) is a subset of Dy,(C®). Since both are ordered by inclusion D, (D) <
Dt (€C°).
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Now it is enough to show that T : L — D (D) a bijection. We do this by
induction on the size of J. Let [y, 8] € 3,7 = I\ [oy, 3], L' = P\ JT, and
D’ = D»(7"). By induction we have that T : L' — Dy (D’) is a bijection.

We must show for T(z) € Dy (D'), that T(z) € Dn(D) if and only if z €
[, 37]. Now T(z) being a downset in D’, but not in D which we get from D’ by
adding the arc ((8 + 1);, ;), means exactly that o; € T(z) and (8 +1); &€ T(z).
This is to say o < x; but (8 + 1) > z;, which means that z € [a;, 7], as needed.

To see that T~! = S +— \/;, S just observe that 7" is defined by its definition
on irreducible elements, and for irreducible z, the downset (x] N €° is the principle
downset (z]e. in €°, so

V @lnee =\/ (e = \/ (@lee == 0
P P

(644

4.2. One-to-one Correspondence

By Theorem 4.1 we have that any sublattice of P can be expressed as the lattice
Dut (D) of non-trivial downsets of some spanned extension D of €°. On the other
hand, it is clear that for a spanned extension D of C° the family

Ip = {las, ] | (B +1);,04) € D\ EC°}

is such that D, (D) is the sublattice P\ |JIp of P. While several digraphs D may
yield the same sublattice of P, as may families of intervals have the same union, it
is clear that there is a unique closed family of intervals defining a given sublattice.
So by Proposition 3.7 we get the following.

Corollary 4.2. Let P =[] C be a product of chains. The map L — Dyp(L) gives
a one-to-one correspondence between the sublattices of P and the spanned preorder
extensions of C°. O

This solves one of our main goals, ‘reversing the point of view’ of correspondence
given in Corollary 2.5.

4.3. Classification of Sublattices

Recall that a sublattice L of P is a {0, 1}-sublattice if it contains the extremal
elements 0 and 1 of P. It is subdirect if for each i € [d], the projection 7; : L — C;
is surjective; this is necessarily a {0, 1}-sublattice. A {0, 1}-sublattice is tight if its
covers are covers of P.

It was shown in [6] that every tight sublattice of a product of chains is subdirect.
The converse was also claimed, but the proof was flawed: indeed, the lattice L =
Z3 x Z3\ ([21,12] U [22,11]) shown in Figure 3 is a subdirect sublattice of Z3 x Z3,
but not tight. One notices in this example that Dy (L) has a cycle. We will see that
this is indicative of non-tight sublattices.

The height of a finite lattice is the maximum number of elements in chain of the
lattice. It is well known that for a distributive lattice, every cover is in a maximum
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o o 1.
« . 2, 2
1 15
L 0¥ Dy(L)

Figure 3: Non-tight subdirect sublattice of Z3 x Z3

chain. It follows that a sublattice L of P is tight if and only if L and P have the
same height. An arc (z,y) in a digraph D is an in-arc of y and an out-arc of x.

Lemma 4.3. Let L be a sublattice of P and D = Dp(L).

(i) L is a {0,1}-sublattice if and only if O is a source (has no in-arcs) in D and
1 is a sink (has no out-arcs).

(ii) L is subdirect if and only if D has no down edges: those of the form a; —
(Oé — 1)z

(iii) L s tight if and only if D is a poset.

Proof. We have by Theorem 4.1 that T : L — D,¢(D) is an isomorphism.

(i) Clearly T(0) = {0} is a downset of D if and only if 0 is a source in D. Just as
clearly, T(1) = € is a downset if and only if 1 is a sink. The result follows.

(ii) We have a; — (o — 1); in D if and only if there is no downset T(x) of D
containing (o — 1); but not ;. This is if and only if there is no element z € L such
that Ty = o — 1.

(iii) First assume that L is tight, and assume, towards contradiction that D contains
a cycle (a1)i, = (@2)iy -+ = (ag)i, — (a1)s,, for some ¢ > 2. We show that no
vertex = in L has z;, = ay, which contradicts the fact that L is tight. Indeed, if
did have z;, = a1, then x;, > oy so by Lemma 3.6 z;, > a3 so z;, > a3 etc., and
we get that z;, > ay, a contradiction.

On the other hand, assume that D has no cycles. Then its vertices can be
ordered so that all arcs go up. Visiting vertices from the bottom of this ordering,
one at a time, we get an ascending walk in L = Dy(D) from 0 to 1 of size |D|,
showing that L has height equal to the height of P. Thus L is a tight sublattice. (]

11
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Remark 4.4. Though our goal was a correspondence including all sublattices
of a product P of chains, there is some satisfication in restricting now to {0,1}-
sublattices so that the sublattices are corresponded to spanned extensions of J(P)
rather than of C*.

For any preorder D with named elements 0 and 1, let D* be the subgraph
induced by D\ {0,1}. For a {0, 1}-sublattice L of P it is a simple matter to
extend (3.1) and show that the map Dy (D (L)) = D(D% (L)) : S+ S\ {1} is an
isomorphism. Composing this with T : L — D, (D5(L)), Theorem ?? tells us that

S:L—DDp(L)"):x+ (z]NC

is a lattice isomorphism. When L is a tight sublattice of P, we have by Lemma 4.3
that Dp(L), and so Dy (L)*, is a poset. It follows that Dp(L)* = J(L) in this case.
So this restriction of Theorem 4.1 is even symbolically an extension of Theorem 2.1.

Observing that a spanned extension Dy (L) of C° yields a spanned extension
D3 (L) of (€°)* = J(P), Corollary 4.2 says that the map L — DJ (L) gives a one-to-
one correspondence between the {0, 1}-sublattices of P and the spanned preorder
extensions of J(P). Tight sublattices of P correspond to spanned poset extensions

of J(P).

5. Back to Embeddings

We would now like to extend Corollary 2.5 by fixing a finite distributive lattice
L, and cataloging all embeddings into products of chains. An embedding e : L —
P, defines a sublattice e(L) of P so gives, by Corollary 4.2, a preorder extension
D = Dgp(e(L)) of €° such that D, (D) = L. But as neither D or C° are canonical
for L, this is a little unwieldy for our purposes. Luckily all such D have a canonical
quotient that turns out to be J(L). Viewing an extension D of €° rather as a
bijective homomorphism ¢ : €° — D, we get a surjective homomorphism of C° —
J(L) by passing to the quotient. As such, every embedding e of L into a product
of chains corresponds to a surjective homomorphism of some structure to J(L).
Giving the proper definitions now, we show in this section that this correspondence
is one-to-one.

A pointed union of chains is any poset that can be represented as C° = J°(P)
for some product P =[] € of chains. (Recalling this construction, we get a pointed
union of chains C° from the parallel sum of the chains of a family € of chains by
appending a new zero 0 and unit 1. A homomorphism (relation preserving map)
¢ : C° — D of a pointed union €° of chains to a preorder D is a pointed chain cover
if it is surjective, and a pointed chain decomposition if it is bijective.

5.1. The Canonical Quotient of Dy(L)

)

The non-preference relation '~’ defined on a preorder D by letting x ~ y if »
and y are in a directed cycle, is an equivalence relation. The quotient D := D/,
is well known to be a poset. Classes of D satisfy [a] < [b] if and only if a < b.
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The quotient homomg’rphz’sm q: D — D:aws [a] induces set maps between the
power-sets 2 and 2P of D and D. For T C D, we let [T] := {[z] | x € T} C D,
and for § € D we let |JS§ = U, es(l-

Lemma 5.1. Let D be a preorder, then Dy(D) — Due(D) : T ~ [T] is an
isomorphism with inverse S+ \JS. Thus D = J°(L), where L = Dy (D).

Proof. As [z] contains only elements in the downset of x, for a downset T, [T] is a
partition of T’ and so is a downset of D. Thus T + [T] is a well-defined map from
Dt (D) to Dyt (D), and S — |J S is its inverse. As T — [T] is clearly a bijection, it
is also the inverse of S+ |JS. That it preserves order is also clear as the order on
both posets is inclusion, and [T] partitions T" with respect to an underlying fixed
partition of D.

As Dy (D) = Dy (D) = L = Dy (J°(L)), the second fact follows by (3.2). O

Now for any pointed chain decomposition ¢ : C* — D of a preorder D we get
a surjective homomorphism QS =qo¢:C =D by composmg with the quotient
map. And while the quotient map ¢ : D — D : — [a] is not invertible, the
homomorphism ¢ tells us what elements were 1dent1ﬁed in passing from D to D.
As identified elements induce a complete digraph in the transitive digraph D, we
can uniquely resolve the pair (qb, ) back to the pair (¢, D) they came from.

Thus we have the following.

Fact 5.2. The map (¢, D) — ((ﬁ, 13) s a one-to-one correspondence between pointed
chain decompositions of preorders, and pointed chain covers of posets.

5.2. The Full Correspondence Extending Corollary 2.5

Fix a lattice L and let J° = J°(L). An embedding e : L — P of L yields by
Corollary 4.2 a spanned preorder extension D = Dgp(e(L)) of €%, which we view
as a pointed chain decomposition ¢, : €® — D. Extending this by the quotient
q:D — D gives a homomorphism ¢, : C° — D of a pointed union of chains to
D =J°.

Using the isomorphism T'oe : L — Dy (D) :  — {e(x)] N C° that we get from
Theorem 4.1, we will see that we can write ¢, explicitly as

(5-1) et (2) = ((e (allp \ (e {o)]p) N E°.

On the other hand, for any surjective homomorphism ¢ : €° — J° from a
pointed union of chains, we get, by Fact 5.2, a unique pointed chain decomposition
¢’ : €° — D of a preorder D such that ¢ = go ¢’ and D = J°. By Lemma 5.1 we
have L = D, (D) and Theorem 4.1 gives us an embedding

T Dpe(D) = P: S = \/(¢)7'(S)

13
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of L into P, where we write (¢’) ~1(S) in place of S as S is only considered a subset of
P via the bijection ¢'. As ¢ induces an isomorphism Dy (D) — Dy (D) = Dy (J°),
this is an embedding

(5.2) ep = (Toq) ' :Dy(J®) = P: S \/qzﬁfl

of L into a product of chains.
We are ready for our generalisation of Corollary 2.5. Recall that a pointed chain
cover of J°(L) is a surjective map from a pointed union of chains to J°(L).

Theorem 5.3. For any finite distributive lattice L, the maps e — ¢ and ¢ —
ey defined in equations (5.1) and (5.2) give a one-to-one correspondence between
pointed chain covers of J°(L), and embeddings of Dyt (J°(L)) = L into products of
chains.

Proof. It is enough to show that the maps e — ¢. and ¢ — ¢, are inverses. For a
downset S of J¢ we have that ¢ (S) = U, cg @2 ' (). But this is just (e (z]],NC,
because anything in (e ()], is in (e (2']], for some other 2’ € S. It follows that
e = ey, ; indeed, recalling for the last equality that p — (p]NC® and S — \/ S are

' eo. (1] =\ 0 (] = \/ (e ally N €° = e (a].

To see that ¢., = ¢, let = be in J°. Using in the third line that (p], \ (p)p =p
for any p, we get

be, (x) = ((%(x ‘JD\ (g (a])p) ME°
(Vo ] (Vo ), ne

(Vo' al) nee

¢~ (). O

Remark 5.4. When removing 0 and 1, it is not hard to see that this yields a one-
to-one correspondence between full embeddings of L into product of chains, and
chain covers of J(L)— surjective homomorphisms from a disjoint unions of chains to
J(L). Subdirect embeddings yield homomorphisms that are injective on each chain;
and tight embeddings correspond with bijections— so-called chain decompositions.

6. Lattices of Independent Sets

Adjusting our construction, we extend and complement results of Koh from [5].
6.1. Background

The correspondence taking a downset of a poset P to its subset of maximal
elements gives one-to-one correspondence between the downsets D(P) of P and the
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antichains A(P) of P. It is not hard to see that by defining the following ordering on
A(P), the correspondence can be extended to a lattice isomorphism: for antichains
I,I' € A(P), set I < I'if for all a € T there is some o’ € I’ such that a < a'.
The width of a poset is the size of its maximum antichain. In [3], Dilworth, using
his famous chain decomposition theorem to decompose a poset P of width d into d
chains, showed the following.

Theorem 6.1.([3]) The poset Ap(P) < A(P) of all maximum sized antichains of
a poset P is a distributive lattice.

In [5], Koh showed a converse: every finite distributive lattice L is A, (P) for
some poset P. In doing so he showed something stronger. Koh defines a construction
(J(L),C) — Pe which yields a poset Pe for every chain decomposition € of the poset
J(L). He then showed the following.

Theorem 6.2.([5]) For every finite distributive lattice L, and every chain decom-
position C of J(L), L =2 An(Pe).

There are posets P for which L = A,,(P) that are not accounted for by Koh’s
construction. A small alteration of the reverse point of view of this paper yields a
simple generalisation of Koh’s construction. With this we show that every poset P
for which L 2 A, (P) arises from a chain cover of J(L). In fact, the generalisation
gives a digraph in place of P for every embedding of L into a product of chains,
and this digraph is a poset if and only if the embedding is subdirect.

The alteration of the reverse pont of view yields transitive digraph extensions of
a union of tournaments rather than preorder extensions of a pointed union of sets.
We start with definitions required to define the antichain lattice of such digraphs.

6.2. Definitions and Setup

A directed path 1 — 29 — - -+ — x4 in a digraph is non-trivial if d > 2. Note
that a loopless vertex induces a trivial path, while a vertex xz with a loop induces
the non-trivial directed path x — =x.

Definition 6.3. A subset I of a digraph D is independent if there is no non-trivial
zy-path in D for x and y in 1.

This is a much stronger notion of independence than is usually defined for
digraphs, it implies independence in the transitive closure of the graph. In fact, no
vertex that is in a cycle, including a looped vertex, can be in an independent set.

Definition 6.4.(A;(A)) Let A;(A) be the family of independent sets of size d of a
digraph A, and order it as follows. For I,I’ € Ay(A), let I < I’ if for each o’ € I’
there is an aa’-path in A with a € I.

Remark 6.5. For a poset P let A be transitive acycle digraph that we get from P
by removing loops. It is easy to see that Ay(A) = A,,,(P) when d is the width of
P. As it will simplify exposition, we will translate Koh’s results into our notation,
and remind the reader of this by saying he essentially proved such and such.

15
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Our basic setup now is as follows. Given a product P = J[C of a family
C = {C1,Cy,...,Cq} of d chains, T will be the (disjoint) union of tournaments
we get from the parallel sum of the chains in € by removing the loops from all
vertices. As we will now be referring to elements of a chain C; individually, we
afix a superscript, for example, denoting the element 3 or x;, of C; by 30 or zgz)
respectively. For a vertex x = (z1,...,24) of P, let I, be the set

d
I, = {:Egl),...,xg )}.

By Remark 6.5 the d element independent sets of T are exactly I, for z € P.

A digraph A is a spanned extension of T if T is a spanning subgraph of A. For
such digraphs all d-element independent sets are of the form I, and so the ordering
on Ay4(A) defined in Definition 6.4 has a simpler definition, essentially observed in
[5] in the case that A is a poset.

Lemma 6.6. Let A be a spanned extension of a union T of d tournaments. For
I, I, € Ag(A), we have I, < I, if and only x; <y; for alli.

Proof. The ‘if’ direction is immediate from Definition 6.4 as all arcs of T are in A.
For the ‘only if’ direction, assume that I, < I, and let ¢ € [d]. We must show that
x; < ;. Assume that it is not, so y; < z;, and so there is a directed path in A from
y; to x;. As I, < I, there is a path in A from x; to y; for some j € [d]. If i = j the
x; and y; are in a directed cycle, contradicting the fact that z; is in an independent
set. If i # j then there is a path from y; to ; and one from z; to y;, contradicting
the fact that y; and y; are in an independent set. O

From here, given a digraph D of appropriately defined width d, it is not hard,
adapting Dilworth’s chain decomposition theorem to digraphs to find as a spanning
subgraph a union T of d tournaments. Then one can prove that the set Ay(D) is
a lattice under the above ordering. We will use Dilworth’s chain decomposition in
this way in Corollary 6.11, but for now we follow our reverse point of view, and
relate such digraphs D to sublattices of a given product of chains.

6.3. The Alternate Rival Construction Ay (L)
Compare the following to Definition 3.2.

Definition 6.7.(A»(J) and Ap(L)) For a family € = {C1,...,Cy4} of chains and
any family of irreducible intervals J of P =[] C, let A»(J) be the spanned extension
of T that we get from T by letting 5U) — o for each [, 7] € J. For a sublattice
L of P, let Ary(L) = Aj)(jL)

See Figure 4 for examples of Ap(L) corresponding to the sublattices L of P in
Figure 2. The digraph Ap(L) is still the transitive closure of the depicted digraph,
where all unoriented arcs are oriented up, but it is no longer reflexive. Note that
in the fourth figure in Figure 4 corresponding to Lz = P \ [35,4!], we have both
of the arcs (40,3()) and (5(,3®), as the intervals [35,4!] and [35,5%] are the
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5(2) 5(2) 5(2) 5(2)
4(1) 4(1) 4(1) 4(1)

3(2) < 3@ \3@)
2(11/

0L 0@ o) 0@ ) 0@ o) 0(2)
T = Ap(?P) Ap(L1) Ap(L2) Ap(Ls)

Figure 4: Digraphs Ay for sublattices of P = Z5 x Zg from Fig. 2

same. The graphs in Figure 4 are all irreflexive except Ap(L3) which, because it is
transitive, has loops on the vertices 3(2),4(2) and 53,

It is easy to see that As(T) = P = Z5 x Zg where T is the first picture in
Figure 4. This an example of the base case of Theorem 6.8. To prove Theorem
6.8 we simply observe what we must do to T to maintain this isomorphism when
we remove an irreducible interval from P. Remove the interval [31,3%] as we do to
get the second lattice Ly = Ly \ [31,3?] of Figure 2. The second figure of Figure 4
shows what we must add to . To ensure that, for example, I(53) = {2(1),3(2)} is
no longer independent, we add the arc (2(), 3(?)) to T. This also ensures that such
sets as I(2 4y and I(; 5) are no longer independent.

Theorem 6.8. Let L be a sublattice of P = [[C, where € = {C1,...,Cyq} is a
family of disjoint chains, and let A = Ap(L). The map

I:L—Ag(A):x— I, := {xgl),...,a:gld)}

s a lattice isomorphism.

Proof. The theorem holds by Lemma 6.6 in the simplest case where L = P and so
A =T. We proceed by induction on the size of A, by adding arcs. As adding arcs
to T or any spanned extension cannot not create new independent sets, we have
that Ag(A) is a subset of P = A4(T); and so by Lemma 6.6 it is a subposet.

Thus it is enough to show, inductively, that I : L — A4(A) is a bijection. We
must show that an independent set I, € Ag(A’) is not in A4(A) if and only if z is in
[ov;, #7]. That is, we must show that I, € Ag(A") \ Ag(A) if and only if z; > o and
B > xj. For I, € Ag(A’), clearly I, & A4(A) if and only if (39, a(?)) completes a
path between x; and z;, so if and only if x; > o and 3 > x;, as needed. O

Observe that this is essentially a generalisation of Koh’s Theorem 6.2. Indeed,
as a tight embedding of L into a product of chains P corresponds to a chain de-
composition of J(L) by Corollary 4.2 and Remark 4.4, Theorem 6.8 gives, for any

17
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chain decomposition of J(L), a digraph A such that A4z(A) = L. As Dilworth’s
decomposition theorem assures there is such a decomposition when d is the width
of J(L), this essentially gives Theorem 6.2.

We continue, and complement Theorem 6.2 by finding every poset P such that
Am(P) = L. As per Remark 6.5, this is done by finding every acyclic transitive
graph A such that A;(A) = L. The main elements required are anti-chain analogues
of Corollary 4.2 and Lemma 4.3. Instead of ‘repeating’ the proofs of these earlier
sections, we observe that the anti-chain analogues follow from the results of Section
4 by comparing the constructions of Dyp(A) and Ap(L).

6.4. Properties of Ap(L) via Koh’s Construction

Comparing definitions, or comparing Figure 2 to Figure 4, it is easy to see how
to get Ap(L) directly from Da(L). Indeed for a spanned preorder extension D of
C°, let A= Kp(D) be the digraph on the vertices of T with arcset

{(89,al7) € 72| (B +1);,1) € D}.

One can easily check that K»(C®) = T, and more generally that K (D (7)) = Ap(J)
for any closed family J of irreducible intervals. (We require that J is closed for this
as an out-arc of 1 in D yields several arcs in K (D), as is seen in the fourth figure
in Figure 4).

It is a simple matter to show the transitivity of K (D) from that of D, and so
get from Proposition 3.7 that A (J) is transitive if J is closed. Observing that the
construction D — K(D) invertible when considering only transitive extensions A
of T, (i.e. tournament decompositions of A) we see that its inverse is essentially
a generalisation of Koh’s construction from [5]. The only difference is that Koh’s
construction would always have loops on 7. As he considered only posets, this
difference would be cosmetic for him, but it is significant for us. The construction
can be used to easily translate statments about Dy (L) to statements about Ap(L).
We give two examples, omitting the simple proofs.

Using Corollary 4.2, we get the following analogue.

Corollary 6.9. Let P = [[C be product of chains. The map L — Ap(L) gives a
one-to-one correspondence between the sublattices of P and the spanned transitive
digraph extensions of T.

The classification lemma, Lemma 4.3, yields the following analogue.
Lemma 6.10. Let L be a sublattice of P and A = Ap(L).

(i) L is a {0, 1}-sublattice if and only if the minimum and maximum element of
each tournament T in T are loopless in A.

(ii) L is a subdirect sublattice if and only if A is loopless, which holds if and only
if contains no directed cycles.

(iii) L is a tight sublattice if and only if A contains no directed cycle or alternating
cycle: V1 —> Uy < Vg —> Ug — = Uy < V.
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For tight sublattices L we have that Dy(L) = J°(L) and so A = Kp(J¢). An
important part of Koh’s proof from [5] was that his version of K5 (J®) contains no
crown, which is essentially what item (iii) says.

6.5. Complement to Koh

For a lattice L, and an embedding e of L into a product P of chains, Theorem
5.3 gives a pointed chain cover ¢ : € — J°(L). This gives, by Fact 5.2, a pointed
chain decomposition ¢ : €® — D, of some preorder D, with Dp(D,.) = L. Viewing
D, as a preorder extension of C°, we can apply construction Kp(J°(L)) to get a
transitive digraph extension A, = Kp(D,) of K»(C®) = J. By Theorem 6.8 we
have L = Ay(Ae). In particular, if the embedding e was subdirect, then by Lemma
6.10 A, is essentially a poset— we simply have to add loops to get Koh’s poset.

As a complement to Koh’s theorem, we want to show that for any poset P such
that Am(P) = L, there is some e such that A, is P with loops removed. More
generally, we have the following.

Corollary 6.11. Let L be a finite distrubitive lattice. For any transitive digraph A
such that L =2 Ay(A) where d is the width of A, there is an embedding e of L into
a product of chains P such that A = A..

Proof. Let A be a transitive digraph with L = A;(A). The main task is to find a
tournament decomposition ¢ : T — A of A into d tournaments.

Where A" is the preorder we get from A by making it reflexive, and P =
q(A") is the poset we get by quotienting by the non-preference relation, we have by
Dilworth’s Decomposition Theorem that P has a decomposition ¢’ : € — P into d
chains. Removing loops from €, we alter ¢’ to a tournament cover ¢ of P so that
it lifts to a tournament decomposition ¢ of A by Fact 5.2, which clearly holds with
loops removed. This is easy: for any vertex x € C € C such that ¢'(x) = [y], add
|ly]| — 1 new elements to C' just above z and let ¢ map « and all of these vertices to
[y]. By Fact 5.2 (5, P) lifts to some (¢, A") where to get A’ we replace an element
y of P with a transitive cycle of size ¢~ 1(y). So A’ = A, and ¢ is a tournament
decomposition of A. Thus A = A., where ey is the embedding of L we get by
Theorem 5.3. O

Corollary 6.12. For every finite poset P such that Ay, (P) = L there is a subdirect
embedding of L into a product of chains P such that P = AL(L).
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