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A THIRD-ORDER VARIANT OF NEWTON-SECANT
METHOD FINDING A MULTIPLE ZERO

Young Ik Kim* and Sang Deok Lee**

Abstract. A nonlinear algebraic equation f(x) = 0 is consid-
ered to find a root with integer multiplicity m ≥ 1. A variant
of Newton-secant method for a multiple root is proposed below: for
n = 0, 1, 2 · · ·

xn+1 = xn − f(xn)2

f ′(xn)
{
f(xn)− λf(xn − f(xn)

f ′(xn)
)
} ,

λ =

{
( m

m−1
)m−1, if m ≥ 2

1, if m = 1.

It is shown that the method has third-order convergence and its
asymptotic error constant is expressed in terms of m. Numeri-
cal examples successfully verified the proposed scheme with high-
precision Mathematica programming.

1. Introduction

To find a numerical solution of a nonlinear algebraic equation f(x) =
0, many researchers[2-5,8-9,11] have improved Newton’s method as well
as secant method and proposed its variants. In 1982, Traub[11] intro-
duced Newton-secant method finding a simple root as shown below:

xn+1 = xn − f(xn)2

f ′(xn)
{
f(xn)− f(xn − f(xn)

f ′(xn))
} , n = 0, 1, 2 · · · . (1.1)

It is known that(1.1) has third-order convergence and asymptotic error
constant as 1

4
f ′′(α)
f ′(α) . Although it is generally difficult to know a priori

the multiplicity of a given root, the convergence study of a multiple root
is of considerable theoretical interest for wide applications. Assuming
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that a function f : C → C has a root α of integer multiplicity m ≥ 1
and is analytic [7] in a small neighborhood of α, an extended variant
of Traub’s Newton-secant method is proposed below to treat multiple
roots as wells as a simple root:

xn+1 = xn − f(xn)2

f ′(xn)
{
f(xn)− λf(xn − f(xn)

f ′(xn))
} , n = 0, 1, 2 · · · , (1.2)

with

λ =
{

( m
m−1)m−1, if m ≥ 2.

1, if m = 1.
(1.3)

It is easily seen that λ = limm−>1( m
m−1)m−1 = 1 and if m = 1, (1.2)

reduces to (1.1). Observe that (1.2) is free of second derivatives, unlike
modified Halley method[4] and Euler-Chebyshev method[11] requiring
second derivatives shown below respectively:

xn+1 = xn − 2

(1 + 1
m)f ′(xn)

f(xn) − f ′′(xn)
f ′(xn)

, n = 0, 1, 2 · · · , (1.4)

xn+1 = xn−mf(xn)
2f ′(xn)

(
3−m +

mf ′′(xn)f(xn)
f ′(xn)2

)
, n = 0, 1, 2 · · · . (1.5)

We rewrite the given equation f(x) = 0 in the form x− g(x) = 0, where
g : C → C is analytic in a sufficiently small neighborhood of α. Thus
(1.2) can be written in the form of the following scheme

xn+1 = g(xn), n = 0, 1, 2, · · · , (1.6)

for a given x0 ∈ C. Let p ∈ N be given and g(x) satisfy the relation
below:{ ∣∣∣ dp

dxp g(x)
∣∣∣
x=α

= |g(p)(α)| < 1, if p = 1.

g(i)(α) = 0 for 1 ≤ i ≤ p− 1 and g(p)(α) 6= 0, if p ≥ 2.
(1.7)

Then it can be shown, by extending the similar analysis[3] in C, that
the asymptotic error constant η with order of convergence p is found to
be with en = xn − α:

η = lim
n→∞

∣∣∣en+1

ep
n

∣∣∣ =
|g(p)(α)|

p!
. (1.8)

The main aim of this paper is to show iteration scheme (1.2) has cubic
convergence by directly identifying g′(α) = g′′(α) = 0, g′′′(α) 6= 0 as well
as to express the asymptotic error constant[1,10] in terms of m, f and
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α. With the fact that f(α) = f ′(α) = · · · = f (m−1)(α) = 0, f (m) 6= 0
and L’Hospital’s rule, let us define

h(x) =
{

f(x)/f ′(x), if x 6= α
limx→α f(x)/f ′(x) = 0, if x = α.

(1.9)

and

g(x) =
{

x−G(x), if x 6= α
x, if x = α.

, (1.10)

where G(x) = f(x)2

f ′(x)
{

f(x)−λf(x−f(x)/f ′(x)
} .

To compute g′(α), g′′(α) and g′′′(α) efficiently, some local proper-
ties of h(x) are shown in the following lemmas that can be proved by
repeated applications of L’hospital’s rule[6] and Leibnitz’ rule[6] for dif-
ferentiation.

Lemma 1.1. Let f : C → C have a root α of integer multiplicity
m ≥ 1 and be analytic in a small neighborhood of α. Then the function
h(x) defined by (1.9) and its derivatives up to order 3 evaluated at α

have the following properties with θj = f (m+j)(α)

f (m)(α)
for j ∈ N:

(1) h(α) = 0
(2) h′(α) = 1

m

(3) h′′(α) = − 2
m2(m+1)

θ1

(4) h(3)(α) = 6
m3(m+1)

(θ2
1 − 2m

m+2θ2)

2. Convergence analysis

Convergence behavior for (1.2) is investigated here by deriving the
asymptotic error constant η in terms of m, f and α. We first need to
investigate some local properties of g(x) in a small neighborhood of α.
It follows from (1.10) that

(g − x) · f ′ · {f − λf(z)
}

= −f2, (2.1)

where f = f(x), f ′ = f ′(x), z = z(x) = x − h(x) and g = g(x) are used
for brevity and the symbol ′ denotes the derivative with respect to x.

Differentiating 2m times both sides of Eq(2.1) with respect to x and
substituting x = α, we obtain the following with the aid of Leibnitz rule
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for differentiation:
2m∑

r=0

(
2m
r

)
(g − x)(2m−r) · [f ′ · {f − λf(z)}](r)∣∣

x=α

= −
2m∑

r=0

(
2m
r

)
f (r) · f (2m−r)

∣∣
x=α

. (2.2)

Using f(α) = f ′(α) = · · · = f (m−1)(α) = 0, f (m)(α) 6= 0 and Lemma
1.2, we favorably find that [f ′ · {f − λf(z)}]∣∣(r)

x=α
6= 0 in the left side of

(2.2) only when r = 2m− 1. By Lemma 1.2, when r = 2m− 1, we have
with t = 1− 1/m

[
f ′ · {f − λf(z)} ](2m−1)

x=α
=

(
2m−1
m−1

)
f (m)(α)2(1− λtm). (2.3)

Using (2.3) in (2.2) yields

2m · (g′ − 1) · (2m−1
m−1

)
f (m)(α)

2
(1− λtm) = −(

2m
m

) · f (m)(α)
2
.

By substituting λ in (1.3) into the above equation and simplifying, we
find that g′(α) = 0.

We differentiate 2m + 1 times both sides of (2.1) with respect to x
and substitute x = α:

2m+1∑

r=0

(
2m+1

r

)
(g − x)

∣∣(2m+1−r)

x=α

[
f ′ · {f − λf(z)} ](r)

x=α

= −
2m+1∑

r=0

(
2m+1

r

)
f (r) · f (2m+1−r)

∣∣
x=α

. (2.4)

The left side of (2.4) can have nonzero terms, when r = 2m − 1 and
r = 2m. [

f ′ · {f − λf(z)} ](2m−1)

x=α
=

(
2m−1
m−1

)
f (m)(α)2(1− λtm). (2.5)

[
f ′ · {f − λf(z)} ](2m)

x=α
= θ1f

(m)(α)2
{(

2m
m

)
(1− λtm)

+
(

2m
m−1

)
(1− λtm−1(t2 − t + 1))

}

= 2θ1f
(m)(α)2

2m!
(m + 1)!m!

. (2.6)

Therefore, we let g′(α) = 0 in the left side of Eq.(2.4) to obtain the
following:

−2
(2m + 1)!
(m + 1)!m!

θ1f
(m)(α)2 +

1
2
g′′(α)

(2m + 1)!
(m− 1)!m!

f (m)(α)
2
(1− λtm)
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= −{(
2m+1

m

)
+

(
2m+1
m+1

)}
f (m)(α)2θ1. (2.7)

Hence in view of the fact λtm = 1 − 1/m and with θ1 in Lemma 1.1,
we obtain g′′(α) = 0. To obtain g′′′(α), we further differentiate 2m + 2
times both sides of Eq(2.1) with respect to x and substitute x = α as
follows:

2m+2∑

r=0

(
2m+2

r

)
(g − x)

∣∣(2m+2−r)

x=α
·[f ′{f − λf(z)}](r)

x=α

= −
2m+2∑

r=0

(
2m+2

r

)
f (r) · f (2m+2−r)

∣∣
x=α

. (2.8)

With t = 1 − 1/m, λtm = 1 − 1/m, g(α) = α, g′(α) = 0 and g′′(α) = 0,
the left side of (2.8) possibly has nonzero values if r = 2m + 1. Using
Lemma 1.2, we have

[
f ′ · {f − λf(z)} ](2m+1)

x=α
=

2m+1∑

k=0

(
2m+1

k

)
f ′(k)∣∣

x=α
· (f − λf(z))

∣∣(2m+1−k)

x=α

=
(
2m+1
m−1

)
f (m)(α)2 · (W1θ

2
1 + W2θ2),

where
{

W1 = (m+2)(m−1)
m3 − m

m−1q1(t), W2 = 1 + m+2
m2 − m

m−1q2(t), if m ≥ 2.

W1 = 3(1− t), W2 = −(t− 1)(t2 + t + 2), if m = 1.

with q1(t) and q2(t) defined in Lemma 1.2. Hence(2.8) now reduces to
with λtm = 1− 1/m:

−2(m + 1) · (W1θ
2
1 + W2θ2) +

(m + 1)2(m + 2)
3

g′′′(α)(1− λtm)

= − 2
m

{
(m + 2)θ1

2 + 2(m + 1)θ2

}
.

From this, it follows that

g′′′(α) =
6

(m + 1)(m + 2)
(φ1θ

2
1 + φ2θ2), (2.9)

where φ1 =

{
(m+2)
2(m+1) , if m ≥ 2.

3/2, if m = 1.
and φ2 = 1

m − 1.

In view of (1.8), we summarize our analysis done so far in the following
theorem:
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Theorem 2.1. Let f, h, m, α and θk(k ∈ N) be described in Lemma
1.1. Let x0 be an initial guess chosen in a sufficiently small neighbor-
hood of α. Then iteration scheme (1.2) converges with order 3 and its
asymptotic error constant η is given by

η =
1

(m + 1)(m + 2)
|φ1θ

2
1 + φ2θ2|,

where φ1 and φ2 are described in (2.9), provided that φ1θ
2
1 + φ2θ2 6= 0.

Remark 2.2. If m = 1, Theorem 2.1 immediately gives the result of
Traub[11].

3. Algorithm, numerical results and discussions

The theory stated in Sections 1 and 2 allows us to develop a zero-
finding algorithm below to be implemented with Mathematica[12]:

Algorithm 3.1 (Zero-Finding Algorithm)
Step 1. Construct iteration scheme (1.2) with the given function f
having a multiple zero α for n ∈ N ∪ {0} as mentioned in Section 1.
Step 2. Set the minimum number of precision digits. With exact zero
α or most accurate zero, supply the asymptotic error constant η, order
of convergence p as well as θ1, θ2, φ1 and φ2 stated in Section 2. Set the
error range ε, the maximum iteration number nmax and the initial guess
x0. Compute f(x0) and |x0 − α |.
Step 3. Tabulate the computed values of n, xn, en = |xn−α|, en+1/en

p

and η.

A variety of numerical examples have been experimented with er-
ror bound ε = 0.5 × 10−235 and minimum number of precision digits
250. Symbol i is used to denote

√−1. The computed asymptotic er-
ror constant agrees up to 10 significant digits with the theoretical one.
The computed zero is actually rounded to be accurate up to the 235
significant digits, although displayed only up to 15 significant digits.

Iteration scheme (1.2) applied to test functions (7 − x + x2)2/(x2 +
cos(x)) and (e−x sinx + log[1 + x−π])2(x−π)2 sin2 x clearly shows suc-
cessful asymptotic error constants with cubic convergence for suitable
initial values chosen near α. Tables 1-2 list iteration indexes n, approxi-
mate zeros xn, errors en = |xn−α| and computational asymptotic error
constants en+1/en

3 as well as the theoretical asymptotic error constant
η.
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Table 1. Asymptotic error constant for f(x) =
(x2−x+7)2

x2+cos x
with m = 2, α = 1+3

√
3i

2

n xn en = | xn − α | en+1/en
3 η

0 0.36 + 2.387i 0.253285 0.9449259108
1 0.499577476751567 + 2.57388126341839i 0.0241986 1.489236779
2 0.500012395983446 + 2.59807060633620i 0.0000136043 0.9600703765
3 0.499999999999998 + 2.59807621135332i 2.37911× 10−15 0.9449013940
4 0.500000000000000 + 2.59807621135332i 1.27245× 10−44 0.9449259108
5 0.500000000000000 + 2.59807621135332i 1.94677× 10−132 0.9449259108
6 0.500000000000000 + 2.59807621135332i 0.× 10−249

Table 2. Convergence for f(x) = (e−x sinx+log[1+x−
π])2(x− π)2 sin2 x with m = 7, α = π

n xn en = | xn − α | en+1/en
3 η

0 2.90000000000000 0.241593 0.2826722582
1 3.13818475241933 0.00340790 0.2416772773
2 3.14159264244215 1.11476× 10−8 0.2816579059
3 3.14159265358979 3.91590× 10−25 0.2826722549
4 3.14159265358979 1.69738× 10−74 0.2826722582
5 3.14159265358979 1.38236× 10−222 0.2826722582
6 3.14159265358979 0.× 10−249

Convergence behavior was confirmed for further test functions that
are listed below:

f1(x) = x9 − x4 + 73, α = −1.24943225052− 1.04103553493i,
m = 1, x0 = −1.57− 0.78i

f2(x) = (x− 2) cos(π
x ), α = 2, m = 2, x0 = 1.97

f3(x) = (x2 + 16) log2(x2 + 17), α = −4i, m = 3, x0 = −3.92
f4(x) = (3−x+x2)4

x4+sin x
, α = 1−√11i

2 , m = 4, x0 = 0.37− 1.89i

f5(x) = (x3−4x2−16x−35) log3(x−6) sin πx
7 , α = 7, m = 5, x0 = 6.5

f6(x) = (x− π)3 cos3 x
2 , α = π, m = 6, x0 = 3.75

f7(x) = (ex2+7x−30 − 1)(x− 3)6, α = 3, m = 7, x0 = 2.87
f8(x) = (x− π) log2(x− π + 1) sin5 x/ex, α = π, m = 8, x0 = 2.79

Let p denote the order of convergence and d the number of new eval-
uations of f(x) or its derivatives per iteration. Taking into account the
computational cost, an efficiency of the given iteration function is mea-
sured by efficiency index ∗EFF = p1/d introduced in [11]. The bigger
efficiency index indicates the more efficient and less expensive iteration
scheme. For our proposed iteration scheme, we find p = 3 and d = 3 to
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get ∗EFF = 3
1
3 ≈ 1.44224957 which is better than

√
2, the efficiency

index of modified Newton’s method.
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