• Title/Summary/Keyword: zero-IF

Search Result 707, Processing Time 0.024 seconds

ON SIGNLESS LAPLACIAN SPECTRUM OF THE ZERO DIVISOR GRAPHS OF THE RING ℤn

  • Pirzada, S.;Rather, Bilal A.;Shaban, Rezwan Ul;Merajuddin, Merajuddin
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • For a finite commutative ring R with identity 1 ≠ 0, the zero divisor graph ��(R) is a simple connected graph having vertex set as the set of nonzero zero divisors of R, where two vertices x and y are adjacent if and only if xy = 0. We find the signless Laplacian spectrum of the zero divisor graphs ��(ℤn) for various values of n. Also, we find signless Laplacian spectrum of ��(ℤn) for n = pz, z ≥ 2, in terms of signless Laplacian spectrum of its components and zeros of the characteristic polynomial of an auxiliary matrix. Further, we characterise n for which zero divisor graph ��(ℤn) are signless Laplacian integral.

ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS

  • FARIZ MAULANA;MUHAMMAD ZULFIKAR ADITYA;ERMA SUWASTIKA;INTAN MUCHTADI-ALAMSYAH;NUR IDAYU ALIMON;NOR HANIZA SARMIN
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.663-680
    • /
    • 2024
  • The zero divisor graph is the most basic way of representing an algebraic structure as a graph. For any commutative ring R, each element is a vertex on the zero divisor graph and two vertices are defined as adjacent if and only if the product of those vertices equals zero. In this research, we determine some topological indices such as the Wiener index, the edge-Wiener index, the hyper-Wiener index, the Harary index, the first Zagreb index, the second Zagreb index, and the Gutman index of zero divisor graph of integers modulo prime power and its direct product.

An FPGA Design of High-Speed QPSK Demodulator (고속 무선 전송을 위한 QPSK 복조기 FPGA 설계)

  • 정지원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1248-1255
    • /
    • 2003
  • High-speed QPSK demodulator has been one important design objective of any wireless communication systems, especially those offering broadband multimedia service. This paper describes Zero-Crossing IF-level(ZCIF) QPSK demodulator for high-speed wireless communications, and its hardware structures are discussed. ZCIF QPSK demodulator is mainly composed of symbol time circuit and carrier recovery circuit to estimate timing and phase-offsets. There are various schemes. Among them, we use Gardner algorithm and Decision-Directed carrier recovery algorithm which is most efficient scheme to warrant the fast acquisition and tracking to fabricate FPGA chip. The testing results of the implemented onto CPLD-FLEX10K chip show demodulation speed is reached up to 2.6[Mbps]. Actually in case of designing by ASIC, its speed may be faster than CPLD by 5 times. Therefore, it is possible to fabricate the ZCIF QPSK demodulator with speed of 10 Mbps.

A GORENSTEIN HOMOLOGICAL CHARACTERIZATION OF KRULL DOMAINS

  • Shiqi Xing;Xiaolei Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.735-744
    • /
    • 2024
  • In this note, we shed new light on Krull domains from the point view of Gorenstein homological algebra. By using the so-called w-operation, we show that an integral domain R is Krull if and only if for any nonzero proper w-ideal I, the Gorenstein global dimension of the w-factor ring (R/I)w is zero. Further, we obtain that an integral domain R is Dedekind if and only if for any nonzero proper ideal I, the Gorenstein global dimension of the factor ring R/I is zero.

A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR MODULES

  • Safaeeyan, Saeed;Baziar, Mohammad;Momtahan, Ehsan
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.87-98
    • /
    • 2014
  • Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say ${\Gamma}(M)$, such that when M = R, ${\Gamma}(M)$ is exactly the classic zero-divisor graph. Many well-known results by D. F. Anderson and P. S. Livingston, in [5], and by D. F. Anderson and S. B. Mulay, in [6], have been generalized for ${\Gamma}(M)$ in the present article. We show that ${\Gamma}(M)$ is connected with $diam({\Gamma}(M)){\leq}3$. We also show that for a reduced module M with $Z(M)^*{\neq}M{\backslash}\{0\}$, $gr({\Gamma}(M))={\infty}$ if and only if ${\Gamma}(M)$ is a star graph. Furthermore, we show that for a finitely generated semisimple R-module M such that its homogeneous components are simple, $x,y{\in}M{\backslash}\{0\}$ are adjacent if and only if $xR{\cap}yR=(0)$. Among other things, it is also observed that ${\Gamma}(M)={\emptyset}$ if and only if M is uniform, ann(M) is a radical ideal, and $Z(M)^*{\neq}M{\backslash}\{0\}$, if and only if ann(M) is prime and $Z(M)^*{\neq}M{\backslash}\{0\}$.

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

BOUNDS OF ZERO MEAN GAUSSIAN WITH COVARIANCE FOR AVERAGE ERROR OF TRAPEZOIDAL RULE

  • Hong, Bum-Il;Choi, Sung-Hee;Hahm, Nahm-Woo
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.231-242
    • /
    • 2001
  • We showed in [2] that if r≤2, zero mean Gaussian of average error of the Trapezoidal rule is proportional to h/sub i//sup 2r+3/ on the interval [0,1]. In this paper, if r≥3, we show that zero mean Gaussian of average error of the Trapezoidal rule is bounded by Ch⁴/sub i/h⁴/sub j/.

MINIMAL CLOZ-COVERS AND BOOLEAN ALGEBRAS

  • Kim, ChangIl
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.517-524
    • /
    • 2012
  • In this paper, we first show that for any space X, there is a Boolean subalgebra $\mathcal{G}(z_X)$ of R(X) containg $\mathcal{G}(X)$. Let X be a strongly zero-dimensional space such that $z_{\beta}^{-1}(X)$ is the minimal cloz-coevr of X, where ($E_{cc}({\beta}X)$, $z_{\beta}$) is the minimal cloz-cover of ${\beta}X$. We show that the minimal cloz-cover $E_{cc}(X)$ of X is a subspace of the Stone space $S(\mathcal{G}(z_X))$ of $\mathcal{G}(z_X)$ and that $E_{cc}(X)$ is a strongly zero-dimensional space if and only if ${\beta}E_{cc}(X)$ and $S(\mathcal{G}(z_X))$ are homeomorphic. Using these, we show that $E_{cc}(X)$ is a strongly zero-dimensional space and $\mathcal{G}(z_X)=\mathcal{G}(X)$ if and only if ${\beta}E_{cc}(X)=E_{cc}({\beta}X)$.

On SF-rings and Regular Rings

  • Subedi, Tikaram;Buhphang, Ardeline Mary
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.397-406
    • /
    • 2013
  • A ring R is called a left (right) SF-ring if simple left (right) R-modules are flat. It is still unknown whether a left (right) SF-ring is von Neumann regular. In this paper, we give some conditions for a left (right) SF-ring to be (a) von Neumann regular; (b) strongly regular; (c) division ring. It is proved that: (1) a right SF-ring R is regular if maximal essential right (left) ideals of R are weakly left (right) ideals of R (this result gives an affirmative answer to the question raised by Zhang in 1994); (2) a left SF-ring R is strongly regular if every non-zero left (right) ideal of R contains a non-zero left (right) ideal of R which is a W-ideal; (3) if R is a left SF-ring such that $l(x)(r(x))$ is an essential left (right) ideal for every right (left) zero divisor x of R, then R is a division ring.

Power conversion control for zero emission buildings (탄소제로 빌딩을 위한 전력변환 제어)

  • Han, Seok-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.504-505
    • /
    • 2011
  • Decreasing actual greenhouse gas will be difficult if it is not solved addressed in architectural fields. Zero emission building or zero energy building, maximize the efficiency of energy, which means the building can operate by their own renewable energy facility without any other supplying. To be a zero emission building, a building needs realization of high efficiency low energy consumption, construction of building its own energy production facilities and lastly a power grid connection. According to increasing of DC load about TV, LED lighting, computer, IT in building for living and business, it is expected the save of energy when the system of AC power distribution change into the system of DC power distribution. Renewable energy exists a big different rate produced by outside environment. When electrical power overproduce, it can supply for system. Otherwise, if electrical power produce less, it can receive supply from system. Send and receive power can lead to zero to annual standard. This paper shows the simulation about efficient control of power conversion which is related to DC power distribution of architecture and DC output of renewable energy by using L-type converter.

  • PDF