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MINIMAL CLOZ-COVERS AND BOOLEAN ALGEBRAS
CHANGIL Kim

ABSTRACT. In this paper, we first show that for any space X, there
is a Boolean subalgebra G(zx) of R(X) containg G(X). Let X be
a strongly zero-dimensional space such that zﬂ_l(X ) is the minimal
cloz-coevr of X, where (E..(8X),23) is the minimal cloz-cover of
BX. We show that the minimal cloz-cover E..(X) of X is a subspace
of the Stone space S(G(zx)) of G(zx) and that E..(X) is a strongly
zero-dimensional space if and only if SE..(X) and S(G(zx)) are
homeomorphic. Using these, we show that E..(X) is a strongly
zero-dimensional space and G(zx) = G(X) if and only if SE..(X) =
Eeo(5X).

1. Introduction

All spaces in this paper are Tychonoff spaces and 5X denotes the
Stone-Cech compactification of a space X .

Iliadis constructed the absolute of Hausdorff spaces, which is the mini-
mal extremally disconnected cover of Hausdorff spaces and they turn out
to be the perfect onto projective covers([5]). To generalize extremally
disconnected spaces, basically disconnected spaces, quasi-F spaces and
cloz-spaces have been introduced and their minimal covers have been
studied by various aurthors([2], [3], [4], [9]). In these ramifications, min-
imal covers of compact spaces can be nisely characterized.
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In particular, Henriksen, Vermeer and Woods ([3]) introduced the
notion of cloz-spaces and they showed that every compact space X has
a minimal cloz-cover (E..(X), zx). Open questions in the theory of cloz-
spaces concerns with the minimal cloz-covers of non-compact spaces and
the relation between E..(8X) and E.(X)([3]). For this problem, we
have partial answers in [6] and [7]. Indeed, it is shown that for a weakly
Lindelof space X, SE..(X) = E.(8X)([4], [6]) and every spaces has a
minimal cloz-cover([7]).

In this paper, we first show that for any space X, there is a Boolean
subalgebra G(zx) of R(X) such that G(X) C G(zx). Let X be a strongly
zero-dimensional space such that zﬁ_l(X ) is the minimal cloz-cover of
X. We show that E..(X) is a subspace of the Stone space S(G(zx))
of G(zx) and that SE..(X) is a zero-dimensional space if and only if
BE.(X)and S(G(zx)) are homeomorphic. Finally, we show that E..(X)
is a strongly zero-dimensional space and G(zx) = G(X) if and only if
ﬁECC(X) = Ecc(ﬁx)

For the terminology, we refer to [1] and [8].

2. Minimal cloz-covers and Boolean algebras

The set R(X) of all regular closed sets in a space X, when partially
ordered by inclusion, becomes a complete Boolean algebra, in which the
join, meet, and complementation operations are defined as follows : for
any A € R(X) and any {A; |i € [} C R(X),

/\{Az | 1€ ]} = Clx(lntx(ﬂ{AZ | 1€ ]})), and

A =clx(X — A)
and a sublattice of R(X) is a subset of R(X) that contains @), X and is
closed under finite joins and meets.

Recall that a map f : Y — X is called a covering map if it is a
continuous, onto, perfect, and irreducible map.

LemMA 2.1. ([6])
(1) Let f : Y — X be a covering map. Then the map ¢ : R(Y) —
R(X), defined by ¥(A) = AN X, is a Boolean isomorphism and the
inverse map ¢! of 1) is given by

YH(B) = cly (f~ (intx(B))) = cly (inty (f~(B))).
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(2) Let X be a dense subspace of a space K. Then the map ¢ : R(K) —
R(X), defined by ¢(A) = AN X, is a Boolean isomorphism and the
inverse map ¢~ ' of ¢ is given by ¢~ *(B) = clg(B).

DEFINITION 2.2. Let X be a space.

(1) A cozero-set C'in X is said to be a complemented cozero-set in X if
there is a cozero-set D in X such that C N D = () and C'U D is a dense
subset of X. In case, {C, D} is called a complemented pair of cozero-sets
n X.

(2) Let G(X) = {clx(C) | C is a complemented cozero-set in X }.

Let X be a space and Z(X)# = {clx(intx(A)) | Ais azero-set in X}.
Suppose that {C, D} is a complemented pair of cozero-sets in X. Then
clx(C) = clx(X — D) and since clx (X — D) € Z(X)#, clx(C) € Z(X)*.
Hence G(X) = {A € Z(X)# | A € Z(X)#} and G(X) is a Boolean
subalgebra of R(X).

Since X is C*-embedded in fX, by Lemma 2.1., G(X) and G(5X)
are Boolean isomorphic.

DEFINITION 2.3. ([3]) A space X is called a cloz-space if every element
of G(X) is a clopen set in X.

A space X is a cloz-space if and only if X is a cloz-space([3]).

DEFINITION 2.4. Let X be a space.
(1) A pair (Y, f) is called a cloz-cover of X if Y is a cloz-space and
f:Y — X is a covering map.
(2) A cloz-cover (Y, f) of X is called a minimal cloz-cover of X if for
any cloz-cover (Z,g) of X, there is a covering map h : Z — Y with

foh=g.

Let B be a Boolean subalgebra of R(X). Let S(B) = {a | ais a
B-ultrafilter} and for any B € B, let ¥5 = {a € S(B) | B € a}. Then
the space S(B), equipped with the topology for which {¥5 | B € B}
is a base, called the Stone-space of B. Then S(B) is a compact, zero-
dimensional space(][8]).

Henriksen, Vermeer and Woods showed that every compact space has
the minimal cloz-cover. Let X be a compact space, S(G(X)) the Stone-
space of G(X) and E..(X) = {(a,z) | x € N"{A | A € a}} the subspace
of the product space S(G(X)) x X. Then (E..(X), zx) is the minimal
cloz-cover of X, where zx((a, z)) = x([3]).
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A space X is called a weakly Lindelof space if for any open cover U
of X, there is a countable subfamily V of U such that U{V | V € V} is
a dense subset of X.

Let X be a weakly Lindelof space. Then FE..(X) is the subspace
{(,2) € S(GBX)) x X |z e n{A] A€ a}} of S(G(AX)) x X and
E..(X) is a dense C*-embedded subspace of E..(8X), that is, BE..(X) =
E..(6X)([4], [6]). Moreover, it was shown that every space has a minimal
cloz-cover([7]).

Let X be a space. Since G(X) and G(5X) are Boolean isomorphic,
S(G(X)) and S(G(BX)) are homeomorphic.

Let X,Y be spaces and f : Y — X a map. For any U C X, let
fu : f7Y(U) — U denote the restriction and co-restriction of f with
respect to f~1(U) and U, respectively.

For any space X, let (E..(6X),25) denote the minimal cloz-cover of
pX.

LEMMA 2.5. ([6]) Let X be a space. If z5'(X) is a cloz-space, then
(zgl(X), 23y ) Is the minimal cloz-cover of X.

For any covering map f : Y — X, let G(f) = {cly(intx(f(A))) |
A€ G(Y)}. Since R(E..(X)) and R(X) are isomorphic and G(E..(X))
is a Boolean algebra, by Lemma 2.1, G(zx) is a Boolean algebra.

DEFINITION 2.6. Let X be a space and B a sublattice of R(X). Then
a B-filter F is called fized if N{F | F € F} # 0.

Let X be a space and for any G(zx)-ultrafilter «, let a. = {4 €
G(Eee(X)) | 2x(A) € a}.

PROPOSITION 2.7. Let X be a space. Then we have the following :
(1) G(zx) is a Boolean subalgebra of R(X) such that G(X) C G(zx).
(2) Suppose that « is a fixed G(zx )-ultrafilter. Then o is a fixed G(Eq.(X))-
ultrafilter.

Proof. (1) Clearly, G(zx) is a Boolean subalgebra of R(X). Let
{C, D} be a complemented pair of cozero-sets in X. Since zx is a con-
tinuous map, zy' (C) and zy'(D) are cozero-sets in E..(X) such that
25 (0) Nz H (D) = 0 and 2'(C) U 25 (D) is dense in E,.(X), because
zx is irreducible. That is, {2z (C), zx* (D)} is a complemented pair of
cozero-sets in E..(X). Since zx(clg,.x)(zx (C))) = cx(C) € G(zx),
g(X) € G(2x).
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(2) Clearly, a. is a G(E..(X))-filter. Suppose that A € G(FE..(X))—a..
Then zx(A) ¢ a. Since « is a G(zx)-ultrafilter, there is a C' € « such
that C' A 2x(A) = 0. By Lemma 2.1., A A clp, (x) (2% (intx(C))) = 0
and by (1), el (x) (25} (intx (C))) € G(Eur(X)).

Since zx(clp,.(x) (25 (intx(C)))) = C € a, clg, x) (25 (intx(C))) € .
Hence . is a G(E..(X))-ultrafilter. Since « is fixed, there is an = €
N{B | B € a}. Then {ANz'(x) | A € a.} has a family of closed
sets in zy' () with the finite intersection property. Since z3'(z) is a
compact subset of E..(X), N{AN 23" (x) | A € a.} # 0 and hence
N{B | B € a.} # 0. Thus a is a fixed G(E..(X))-ultrafilter. O

Let X be a space and ccX = {a | a is a fixed G(zx)-ultrafilter} the
subspace of S(G(zx)).

If G(X) is a base for closed sets in X or G(E.(X)) is a base for
closed sets in E..(X), then for any fixed G(zx)-ultrafilter a, | N{B |
B € a.} |= 1. Indeed, if X is a zero-dimensional space, then G(X) is a
base for closed sets in X. Using this, we have the following :

PROPOSITION 2.8. Let X be a space, G(X) a base for closed sets
in X and Y = {(a,z) | * € Na} the subspace of the product space
S(G(zx)) x X. Then the map t : Y — ccX, defined by t((a, 7)) = a,
is a homeomorphism.

For any zero-dimensional space X, define a map hy : ccX — E..(X)
by hx(a) = Na.. In the following, let ¥ 5 = Z%(ZX) for all B € G(zx).

We recall that a space X is called a strongly zero-dimensional space
if 5X is a zero-dimensional space.

THEOREM 2.9. Let X be a strongly zero-dimensional space such that
25 (X) is a cloz-space. Then hy : ccX — E..(X) is a homeomorphism.

Proof. Let o, € ccX. Suppose that a # §. Then there are A, B in
G(E..(X)) such that zx(A) € a, zx(B) € § and zx(A) A zx(B) = 0.
Then A € a., B € 6. and by Lemma 2.1., zx (A)Azx(B) = zx(AAB) = ()
and AA B = (). Since E..(X) is a cloz-space, A and B are clopen sets
in E..(X) and hence AN B = (). Note that hx(a) € A and hx(d) € B.
Hence hx(«) # hx(0) and so hy is an one-to-one map.

Let y € Eoo(X) and v = {2x(C) | y € C € G(E.(X))}. Clearly,
v is a G(zx)-filter and N{B | B € v} # 0. Let D € G(E..(X)) such
that zx(D) ¢ v. Then y ¢ D. Since y € D' = E.(X) — D, zx(D') =
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zx(D) € ~ and hence v is a G(zx)-ultrafilter. Hence v € ccX and
hx(v) =y. Thus hx is an onto map.

Let F' be a closed set in E..(X). By Lemma 2.5., E..(X) = zﬁ’l(X)
and (v,z) € E..(X) — F. Since X is a strongly zero-dimensional space,
G(F..(8X)) is a base for closed sets in E..(8X). Hence there is an
A € G(6X) such that v € Ei(ﬁx) and (Zi(ﬁX) x U)N F = { for some
clopen neighborhood U of z in fX. Let V = (ZZ(BX) X U) N Eq(X).
Since V' is a clopen set in E..(X), V € G(E.(X)) and hence G(E (X))
is a base for closed sets in E..(X).

Let E € G(E..(X)). Suppsoe that y € ccX — hy*(E). Then hx(u) =
Npe ¢ E and so E ¢ .. By the definition of pu., zx(F) ¢ 1 and hence
ol ¢ ZZ)((E)' Thus EZ)((E) - h)_(l(E)

Suppose that § € h'(E). Then hx () € E and hence for any A € 0.,
ANE #1. Since E..(X) is a cloz-space, AN E # () for all A € 6. Since
0. is a G( L. (X))-ultrafilter, & € . and so zx(EF) € 6. Since 0 € X, (g),
ZZ)((E) = h;(l(E)

Since hy is an one-to-one, onto map and G(F..(X)) is a base for
closed sets in E..(X), hx is a homeomorphism. O

Let ¢x = zx o hx. Then we have the following :

COROLLARY 2.10. Let X be a strongly zero-dimensional space such
that zgl(X ) is a cloz-space. Then (ccX, cx) is the minimal cloz-cover of
X and cx (o) = Na for all a € ceX.

Let X be a strongly zero-dimensional space such that zﬁ_l(X ) is a
cloz-space. Since X is a zero-dimensional space, B(X) = {B | B
is a clopen set in X} is a Boolean subalgeba of G(zx). Since G(zx)
and {clgx(A) | A € G(zx)} is Boolean homeomorphic, the map m :
S(G(zx)) — S(B(BX)), defined by m(a) = a N B(SX), is a covering
map. Since n: S(B(fX)) — BX, defined by n(a) = N{A | A € a}, is
a covering. Hence f : S(G(zx)) — SX, defined by f(a) = N{clsx(A) |
A € a}, is a covering map([8]).

THEOREM 2.11. Let X be a strongly zero-dimensional space such that
25’1 (X) is a cloz-space. Then E..(X) is a strongly zero-dimensional space
if and only if there is a homeomorphism kx : fE..(X) — S(G(zx)) such
that kx o Bg,.x) = j o hyx', where j : ccX — S(G(zx)) is the dense
embedding.
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Proof. (=). By Theorem 2.9., 5(ccX) = fE..(X) and since S(G(zx))
is a compactification of ccX, there is a continuous map kx : SE..(X) —
S(G(2x)) such that kx o Bg,.(x) = johy'. Since BE..(X) and S(G(zx))
are compact spaces and Sg.(x) and j are dense embeddings, kx is a
covering map.

Let p # ¢ in SE.(X). Since SE.(X) is a zero-dimensional space,
there is a clopen set B in SE..(X) such that p € B and ¢ ¢ B. Then
BN E.(X) € G(E.(X)). Note that f o kx o Bg.(x) = Bx © zx and
f okx is a covering map. Then zx(B N E..(X)) = f(kx(B)) N X and
2x(B N E(X)) € G(2x). Hence f(X.,(BnE.(x)) = f(kx(B)). Since
f is a covering map and ¥., (png..(x)), kx(B) are regular closed sets in
S(g(Zx)), by Lemma 2.1., ZZX(BQECC(X)) = kix(B) Since kx(p) c kx(B),
kx(p) € X, (BnE..(x))- Similarly, kx(q) € X, (pnEe..(x))- Note that

2 (BNEee(X)) N Xizy (B'NEwe(X))
= X (BNEee(X))Azx (B'NEec(X))

= Yoy (BNEee(X)A(BNEce(X)))

Hence kx(p) # kx(q) and so kx is an one-to-one map. Thus ky is a
homeomorphism.

(<) Since S(G(zx)) is a zero-dimensional space, SE..(X) is a zero-
dimensional space. O

Let X be a strongly zero-dimensional space. Then SE..(X) = E..(8X)
if and only if E..(X) is z#-embedded in E..(8X), that is, for any
A€ Z(E.(X))#, thereisa B € Z(E..(8X))# such that A = BNE,.(X).
Morever, if BE..(X) = E.(8X), then zx : E.(X) — X is 2%-
irreducible, that is, zx(Z(E..(X))#) C Z(X)* ([7]).

For any strongly zero-dimensional space X, S(G(6X)) and X are
zero-dimensional space and hence E..(8X) is a zero-dimensional space.
Using these, we have the following :

COROLLARY 2.12. Let X be a strongly zero-dimensional space such
that Zﬁ_l(X ) is a cloz-space. Then E..(X) is a strongly zero-dimensional

space and G(zx) = G(X) if and only if BE..(X) = E..(8X).

Proof. (=) Since E..(X) is a strongly zero-dimensional space, by The-
orem 2. 11., S(G(zx)) = BE.(X). That is, kx is a homeomorphism.
Since S(G(zx)) is a cloz-spce, there is a covering map ¢ : S(G(zx)) —
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E..(fX) such that z3 0 g = f. Suppose that a # ¢ in S(G(zx)).
Then there is an A € G(zx) such that a € ¥4 and § € ¥4 . Since
clEcc(ﬂx)(zﬁ_l(A)) € G(E.(6X)), clECC(gx)(zﬁ_l(A)) is a clopen set in
E..(fX) and clECC([;X)(zlgl(A’)) = E..(8X) — clg..3x) (zgl(A)) Since
9(a) € dp,.sx)(z5' (A)) and g(0) € clp,.5x)(z5' (A)), g(a) # g(6) and
g is a homeomorphism. Thus SFE..(X) = E..(6X).

(<) Clearly SE..(X) is a zero-dimensional space. Since SFE..(X) =
E..(BX), 2x : Eee(X) — X is z#-irreducible. Since G(FE..(X)) ={A €
Z(EL(X)* | A € Z(BulX))*}, 2x(G(El X)) C {2x(4) € Z(X)* |
zx(A) € Z(X)#}. Hence G(zx) = G(X).

O
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