DOI QR코드

DOI QR Code

ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS

  • FARIZ MAULANA (Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung) ;
  • MUHAMMAD ZULFIKAR ADITYA (Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung) ;
  • ERMA SUWASTIKA (Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung) ;
  • INTAN MUCHTADI-ALAMSYAH (Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung) ;
  • NUR IDAYU ALIMON (Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA) ;
  • NOR HANIZA SARMIN (Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia)
  • Received : 2023.11.19
  • Accepted : 2024.01.24
  • Published : 2024.05.30

Abstract

The zero divisor graph is the most basic way of representing an algebraic structure as a graph. For any commutative ring R, each element is a vertex on the zero divisor graph and two vertices are defined as adjacent if and only if the product of those vertices equals zero. In this research, we determine some topological indices such as the Wiener index, the edge-Wiener index, the hyper-Wiener index, the Harary index, the first Zagreb index, the second Zagreb index, and the Gutman index of zero divisor graph of integers modulo prime power and its direct product.

Keywords

Acknowledgement

This research was funded by ITB International Research Grant 2021.

References

  1. I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, 1st edn, Springer, Berlin, 1986.
  2. S. Manimekalai and U. Mary, Computation of total eccentricity using python program, Journal of Physics: Conference Series 1139 (2018).
  3. S. Gupta, M. Singh, and A.K. Madan, Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002), 386-401. https://doi.org/10.1016/S0022-247X(02)00373-6
  4. S. Wang, M.R. Farahani, M. Kanna, M.K. Jamil, and R.P. Kumar, The wiener index and the hosoya polynomial of the jahangir graphs, Applied anad Computational Mathematics 5 (2016), 138-141. https://doi.org/10.11648/j.acm.20160503.17
  5. H. Wiener, Structural determination of paraffin boiling points, Journal of the American Chemical Society 69 (1947), 17-20. https://doi.org/10.1021/ja01193a005
  6. Ghazali Semil Ismail, Nor Haniza Sarmin, Nur Idayu Alimon, Fariz Maulana, General zeroth-order Randic index of zero divisor graph for the ring of integers modulo pn, AIP Conf. Proc. 2975 (2023), 020002. https://doi.org/10.1063/5.0181017
  7. M. Ghorbani and M.A. Hosseinzadeh, A new version of zagreb indices, Filomat 26 (2012), 93-100. https://doi.org/10.2298/FIL1201093G
  8. D. Vukicevic and A. Graovac, Note on the comparison of the first and second normalized zagreb eccentricity indices, Acta Chimica Slovenica 57 (2010), 524-528.
  9. D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra 217 (1999), 434-447.
  10. I. Beck, Coloring of commutative rings, Journal of Algebra 116 (1988), 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
  11. S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, Journal of Algebra 274 (2004), 847-855
  12. D.F. Anderson, and S.B. Mulay, On the diameter and girth of a zero-divisor graph Journal of Pure and Applied Algebra 210 (2007), 543-550. https://doi.org/10.1016/j.jpaa.2006.10.007
  13. S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Communications in Algebra 31 (2003), 4425-4443. https://doi.org/10.1081/AGB-120022801
  14. S.P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Mathematics 307 (2007), 1155-1166. https://doi.org/10.1016/j.disc.2006.07.025
  15. C.J. Rayer and R.S. Jeyaraj, Applications on topological indices of zero-divisor graph associated with commutative rings, Symmetry 15 (2023), 335. https://doi.org/10.3390/sym15020335
  16. K. Xu and K.C. Das, On harary index of graphs, Discrete Aplied Mathematics 159 (2011), 1631-1640. https://doi.org/10.1016/j.dam.2011.06.003
  17. P. Dankelman, I. Gutman, S. Mukwembi and H.C. Swart, The edge-wiener index of a graph, Discrete Mathematics 309 (2009), 3452-3457. https://doi.org/10.1016/j.disc.2008.09.040
  18. S. Kavithaa and V. Kaladevi, Gutman index and detour Gutman index of pseudo-regular graphs, Hindawi Journal of Applied Mathematics 2017 (2017), 4180650.