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Abstract. In this note, we shed new light on Krull domains from the

point view of Gorenstein homological algebra. By using the so-called w-

operation, we show that an integral domain R is Krull if and only if for
any nonzero proper w-ideal I, the Gorenstein global dimension of the w-

factor ring (R/I)w is zero. Further, we obtain that an integral domain R

is Dedekind if and only if for any nonzero proper ideal I, the Gorenstein
global dimension of the factor ring R/I is zero.

1. Introduction

Throughout this paper, all the rings are commutative rings with 0 and 1
such that 0 ̸= 1. In order to avoid a trivial case, we assume that all integral
domains are not field. It is well-known that Krull domains play an important
role in the development of multiplicative ideal theory. By using star-operations,
the Krull domains can be characterized those domains having nonzero ideal w-
invertible (equivalently, t-invertible). So the Krull domains are also viewed as
“Dedekind domains” in the sense of star-operations. In [3, Proposition 2.8],
Bennis, Hu and Wang prove that an integral domain R is Dedekind if and
only if every non-trivial factor ring of R is 2-SG-semisimple, where a ring R is
called 2-SG-semisimple in [3] if every R-module is 2-SG-projective. Thus it is
natural to ask whether we can characterize Krull domains from the point view
of Gorenstein homological algebra.

Recall that an R-module M is called Gorenstein projective (G-projective)
in [10] if M has a complete projective resolution

P : · · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · ·
with M ∼= ker(P 0 → P 1). The Gorenstein injective (G-injective) module is
defined dually. For an R-module M , the Gorenstein injective and projective
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dimensions of M are denoted by G-idR(M) and G-pdR(M), respectively. It is
shown in [6, Theorem 1.1] that for a ring R,

sup{G-pdR(M) |M is an R-module} = sup{G-idR(M) |M is an R-module}.

This common value is called the Gorenstein global dimension of R and de-
noted by G-gl.dim(R). As in [7], a ring R is called Gorenstein semisimple
(G-semisimple) if every R-module is G-projective, i.e., G-gl.dim(R) = 0. It
is shown in [7, Theorem 2.2] that a G-semisimple ring is precisely a QF-ring,
where a ring R is called a quasi-Frobenius ring (QF-ring) if R is Noetherian
and self-injective. Let n be a fixed positive integer. Recall from [5] that an R-
module M is called n-strongly Gorenstein projective (n-SG-projective) if there
exists an exact sequence of R-modules

0 −→ M −→ Pn −→ · · · −→ P1 −→ M −→ 0

such that each Pi is projective and the functor HomR(−, Q) leaves the sequence
exact whenever Q is a projective R-module. The 1-SG-projective module is
just the strongly Gorenstein projective module (SG-projective modules) in [4].
Accordingly, a ring R is called n-SG-semisimple in [7] if every R module is n-
SG-projective. The 0-SG-semisimple ring is the so-called SG-semisimple ring.
Both SG-semisimple rings and 2-SG-semisimple rings are QF-rings, which are
investigated in [7] and [3], respectively. It is clear that an SG-semisimple ring
is 2-SG-semisimple, and a 2-SG-semisimple ring is G-semisimple.

Recently, Chang and Kim use the w-operation to study the factor rings of
Krull domains, and they prove in [8, Theorem 4.5] that an integral domain
R is Krull if and only if for any nonzero proper w-ideal I of R, the w-factor
ring (R/I)w of R modulo I is an Artinian PIR, where a ring R is called a
principal ideal ring (PIR) if every ideal of R is principal. In this note, we
shall further characterize Krull domains by their w-factor ring and extend the
above Bennis-Hu-Wang’s result to Krull domains. We prove in Theorem 9 that
an integral domain R is Krull if and only if for any nonzero proper w-ideal
I, the w-factor ring (R/I)w of R modulo I is 2-SG-semisimple. Equivalently,
G-gl.dim(R/I)w = 0 for any nonzero proper w-ideal I of R. Our result will
be complementary for Chang-Kim Theorem ([8, Theorem 4.5]). It is also seen
in Theorem 13 that an integral domain R is Dedekind if and only if R/I is a
QF-ring for any nonzero proper ideal I of R.

Next we recall for reader’s convenience the following facts of w-modules. Let
R be a ring. As in [19], a nonzero ideal J of R is called a Glaz-Vasconcelos ideal
(GV-ideal) if J is finitely generated and the natural homomorphism φ : J →
HomR(J,R) is an isomorphism. Denote the set of GV-ideals of R by GV(R).
Let M be an R-module. Then M is called GV -torsion-free if Jx = 0 with
J ∈ GV(R) and x ∈ M implies x = 0, and M is called GV -torsion if for any
x ∈ M , there exists J ∈ GV(R) with Jx = 0. For a GV-torsion-free module
M , set Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV(R)} which is called the
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w-envelope of M , where E(M) is the injective hull of M . Let M be an GV-
torsion-free module over R. Then M is called a finite type module if there exists
submodule N of M such that Nw = Mw, and M is called a w-module over R if
M = Mw. If further an ideal I of R is a w-module, then I is called a w-ideal.
An ideal m maximal among integral w-ideals is called a maximal w-ideal, and
the set of maximal w-ideals is denoted by w-max(R). The w-dimension of
a commutative ring R is defined to be sup{ht(m) |m ∈ w-max(R)} and it is
denoted by w- dim(R). We say that two ideals I and J of R are w-comaximal
if (I + J)w = R, and a ring R is a DW-ring if every ideal of R is a w-ideal. As
in [16], an integral domain R is called a strong Mori domain (an SM-domain)
if R satisfies ACC on w-ideals. It is worth noting that a new description of
w-envelope is recently given in [21]. Let M be a GV-torsion-free module over
R and set M [X] := R[X]

⊗
R M . Then

S := {β ∈ R[X] |β is regular and AnnM [X](β) = 0}

is a multiplicative closed subset of R[X]. Thus, we can consider the localization
M [X] at S, denoted by T ′(M [X]). Let Γ1(M) := {u ∈ T ′(M [X]) | there exists
some J ∈ GV(R) such that Ju ⊆ M} and Γ2(M) := {

∑n
i=1 aiX

i/
∑n

i=1 biX
i ∈

T ′(M [X]) | ai ∈ M and bi ∈ R with aibj = biaj for all i, j and (b1, . . . , bn) ∈
GV(R)}. By [21, Theorem 3.4], it is proved that Mw = Γ1(M) = Γ2(M) for
any GV-torsion-free R-module M . Further, if I is a nonzero proper w-ideal of
R, then R/I is a GV-torsion-free R-module and its w-envelope has a natural
ring structure by [21, Corollary 3.5], which is called the w-factor ring of R
modulo I in [18]. We now proceed to state and prove our main results.

2. The main results

We start by the following lemmas:

Lemma 1 (Krull Intersection Theorem for SM-domains [16, Theorem 1.8]). Let
R be an SM-domain and let M be a finite type w-module. If B =

⋂∞
k=1(I

kM)w
where I is an ideal of R, then B = (IB)w. If in addition Iw ̸= R, then B = 0.

Lemma 2. If I is an ideal of an SM-domain R and Iw ̸= R, then⋂∞
k=1(I

k)w = 0.

Proof. Since R is a projective R-module, R is a finite type w-module over R
by [19, Corollary 2.4]. Take M = R in Lemma 1. Then

⋂∞
k=1(I

k)w = 0. □

Lemma 3. If P is a maximal w-ideal of an SM-domain R, then P ̸= (P 2)w.

Proof. By Lemma 2, we have
⋂∞

k=1(P
k)w = 0. If P = (P 2)w, then P = (P k)w

for any positive integer k. It means that
⋂∞

k=1(P
k)w = P ̸= 0. Which is

impossible. So P ̸= (P 2)w. □
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Lemma 4 (w-theoretic version of Chinese Remainder Theorem for rings [21,
Theorem 3.10]). Let {Ii | i = 1, 2, . . . , n} be a pairwise w-comaximal set of w-
ideals in a ring R and let I = I1 ∩ I2 ∩ · · · ∩ In. Then the map(

R

I

)
w

∼=
n∏

i=1

(
R

Ii

)
w

is a ring isomorphism.

For an Artinian local ring, we can use the following lemma to determinate
when it is SG-semisimple (resp., 2-SG-semisimple, G-semisimple).

Lemma 5. The following statements hold for an Artinian local (R,m).

(1) R is an SG-semisimple ring if and only if m is SG-projective.
(2) R is a 2-SG-semisimple ring if and only if m is principal.
(3) R is a G-semisimple ring if and only if m is G-projective.
(4) If m is SG-projective, then m is principal.
(5) If m is principal, then m is G-projective.

Proof. (1) This follows from [11, Corollary 3.4].
(2) This follows from [3, Lemma 2.2 and Theorem 2.6].
(3) This follows from [11, Corollary 2.6].
(4) and (5) are obvious. □

Let φ : R → T be a ring homomorphism. Then φ is called a w-linked ring
homomorphism in [18] if T is a w-module over R. When I is a w-ideal of a ring
R, R/I as an R-module is GV-torsion-free by [19, Theorem 2.7]. For a nonzero
proper w-ideal I, we consider the natural composite map

π : R ↠ R/I ↪→ (R/I)w.

Then π is a w-linked ring homomorphism. Let A be an ideal of (R/I)w. Define
Awπ := Aw, where Aw is the w-envelope of A as an R-module. Let us denote
the w-envelope of A as an (R/I)w-module by AW , which is different from the
w-envelope Aw (= AwR

) of A as an R-module. Then AwR
= Aw ⊆ AW .

Following [18], we say that A is a wπ-ideal of (R/I)w if Awπ
= A, and (R/I)w

is a DWπ-ring if every ideal of (R/I)w is a wπ-ideal.

Lemma 6. Let I be a nonzero proper w-ideal of an integral domain R. Denote
by 0 the zero ideal of the w-factor ring (R/I)w of R modulo I. Then 0w = 0.

Proof. Since I is a w-ideal of R, π : R → (R/I)w is a w-linked ring homo-
morphism. So 0 ⊆ 0w ⊆ 0W by [18, Theorem 3.3(1)]. But 0W = 0 gives
0w = 0. □

Now we start to prove our main results.

Theorem 7. Let R be an integral domain and let I be a nonzero proper w-
ideal of R. If the w-factor ring (R/I)w of R modulo I is an Artinian ring, then
(R/I)w is a DWπ-ring.
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Proof. Let S = {M1 ∩ M2 ∩ · · · ∩ Mk | k ≥ 1, each Mi is a maximal wπ-ideal
of (R/I)w}. Set Rw = (R/I)w. Since Rw is an Artinian ring, Rw satisfies the
minimal condition on S. Hence S has a minimal element. SayM1∩M2∩· · ·∩Mn

where n is a positive integer. Let M be any maximal wπ-ideal of Rw. Then
M ∩M1 ∩M2 ∩ · · · ∩Mn ∈ S. Certainly

M ∩M1 ∩M2 ∩ · · · ∩Mn ⊆ M1 ∩M2 ∩ · · · ∩Mn.

But since M1 ∩M2 ∩ · · · ∩Mn is a minimal element of S, we have

M ∩M1 ∩M2 ∩ · · · ∩Mn = M1 ∩M2 ∩ · · · ∩Mn.

So M1M2 · · ·Mn ⊆ M1 ∩ M2 ∩ · · · ∩ Mn ⊆ M . It follows that M = Mj for

some j ∈ {1, 2, . . . , n}. Hence Rw has only finite number of maximal wπ-ideals.
Thus by [18, Theorem 3.11], Rw is a DWπ-ring. □

Theorem 8. Let R be a Krull domain and let P be a maximal w-ideal of R.
Then for any positive integer l, the w-factor ring (R/(P l)w)w of R modulo
(P l)w is a local 2-SG-semisimple ring, where (P/(P l)w)w is the only maximal
ideal.

Proof. Set Rw = (R/(P l)w)w and Pw = (P/(P l)w)w. Since R is a Krull
domain, R is an SM-domain with w- dim(R) = 1. Hence Rw is an Artinian
ring by [8, Corollary 2.7]. By Theorem 7, it follows that Rw is a DWπ-ring.
Note that Pw is the only maximal wπ-ideal of Rw by [18, Proposition 4.4(3)].
Thus Pw is the only maximal ideal of Rw. So Rw is an Artinian local ring. We
next claim that Rw is a 2-SG-semisimple ring.

Case 1. l = 1. Then Rw = (R/P )w. Since P is a maximal w-ideal of R, Rw

is a field by [18, Theorem 4.5(2)]. Certainly Rw is a 2-SG-semisimple ring.
Case 2. l > 1. Note that (P l)w ̸= 0. Choose a nonzero element a in (P l)w.

Then by [12, Corollary 1.5] there exists b ∈ P such that (a, b)w = (a, b)v =
Pv = Pw = P . So

Pw = (b+ (P l)w)w = (b+ (P l)w)wπ
= (b+ (P l)w).

And hence Rw is a 2-SG-semisimple ring by Lemma 5(2).
Consequently, Rw is a local 2-SG-semisimple ring. □

Theorem 9. The following statements are equivalent for an integral domain
R.

(1) R is a Krull domain.
(2) (R/I)w is 2-SG-semisimple for any nonzero proper w-ideal I of R.
(3) (R/I)w is G-semisimple for any nonzero proper w-ideal I of R.
(4) G-gl.dim(R/I)w = 0 for any nonzero proper w-ideal I of R.
(5) (R/I)w is a QF-ring for any nonzero proper w-ideal I of R.

Proof. (1) ⇒ (2) Let I be a nonzero proper w-ideal of R. Then by [1, Corollary
3.2], I is a t-product of prime t-ideals. Since R is a Krull domain, t = w over

R. Hence I is a w-product of prime w-ideals. Write I = (P l1
1 P l2

2 · · ·P ln
n )w =
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((P l1
1 )w(P

l2
2 )w · · · (P ln

n )w)w. Since R is a Krull domain, w- dim(R) = 1. Hence
{Pi | i = 1, 2, . . . , n} is a pairwise w-comaximal set of w-ideals. It follows

from [21, Lemma 3.8] that {(P li
i )w | i = 1, 2, . . . , n} is likewise a pairwise w-

comaximal set of w-ideals. So I = ((P l1
1 )w(P

l2
2 )w · · · (P ln

n )w)w = (P l1
1 )w ∩

(P l2
2 )w ∩ · · · ∩ (P ln

n )w by [21, Lemma 3.9]. Applying Lemma 4, we have the
following ring isomorphism:(

R

I

)
w

=

(
R

(P l1
1 )w

⋂
(P l2

2 )w
⋂

· · ·
⋂
(P ln

n )w

)
w

∼=
n∏

i=1

(
R

(P li
i )w

)
w

.

Since the w-fractor ring (R/(P li
i )w)w is a local 2-SG-simple ring by Theorem

8,
∏n

i=1(R/(P li
i )w)w is a 2-SG-simple ring by [3, Lemma 2.1]. Hence (R/I)w

is a 2-SG-simple ring.
(2) ⇒ (3) and (3) ⇒ (4) are clear.
(4) ⇒ (5) follows from [6, Proposition 2.6].
(5) ⇒ (1) By (5) and [8, Theorem 3.5], it follows that R is an SM-domain.

Let P be a nonzero prime w-ideal of R. By Lemma 3, we have P ̸= (P 2)w. Take
a ∈ P\(P 2)w. Set a = a + (P 2)w, Pw = (P/(P 2)w)w and Rw = (R/(P 2)w)w.
ThenRw is a QF-ring by (5). And henceRw is an Artinian ring. By Proposition
7, Rw is a DWπ-ring. Since P is a maximal w-ideal ofR, Pw is the only maximal
wπ-ideal of Rw by [18, Proposition 4.4]. Hence Rw is an Artinian local ring and
its maximal ideal is Pw. Note that Pw ·Pw ⊆ (P ·P )w = 0w. But since 0w = 0
by Lemma 6, we have Pw ·Pw = 0. So Pw ⊆ Ann

Rw
(a)w and Pw ⊆ AnnRw

Pw.

But as a /∈ (P 2)w, Ann
Rw

(a)w ̸= Rw. Hence Pw = Ann
Rw

(a)w. Also since Pw

is the maximal ideal of Rw, either Pw = AnnRw
Pw or AnnRw

Pw = Rw. We

claim that AnnRw
Pw ⊂ Rw. Assume on the contrary that AnnRw

Pw = Rw.

Then by Lemma 6, Pw = 0 = 0w. It follows from [18, Proposition 4.4(2)] that
P = (P 2)w, which is a contradiction. Thus Ann

Rw
(a)w = Pw = AnnRw

Pw.

Since Rw is a QF-ring, it follows from [14, Theorem 4.6.11] that

(a)w = Ann
Rw

(Ann
Rw

(a)w)

= Ann
Rw

(Ann
Rw

Pw) = Pw.

So P = (aR + P 2)w by [18, Proposition 4.4(2)]. Thus PRP = aRP + P 2RP .
Note that R is an SM-domain of w-dimension one by [8, Corollary 2.5]. So
P is a finite type w-ideal, and hence PRP is a finitely generated ideal of RP .
By Nakayama lemma, we have PRP = aRP . Hence P is a w-locally principal
ideal of finite type. So P is w-invertible. Therefore R is a Krull domain by
[16, Theorem 2.8]. □

Corollary 10 (cf. [8, Corollary 4.9]). An SM-domain R is Krull if and only if
for any nonzero proper w-ideal I of R, (R/I)w is self-injective.

Proof. This follows from Theorem 9 and [8, Theorem 3.5]. □



A GORENSTEIN HOMOLOGICAL CHARACTERIZATION 741

Corollary 11. An SM-domain R of w-dimension one is Krull if and only if for
any nonzero proper w-ideal I of R, every prime ideal of (R/I)w is G-projective.

Proof. [11, Corollary 2.5] gives that an Artinian ring is a QF-ring if and only if
every prime ideal is G-projective. Applying Theorem 8 and [8, Corollary 3.7],
the statement is immediate. □

1960s, Bass in [2] defined the some finitistic dimensions. Let R be a ring. The
finitistic dimension of R, denoted by FPD(R), is defined to be the supremum
of the projective dimensions of R-modules with finite projective dimensions.
The finitistic weak dimension of R, denoted by FFD(R), is defined to be the
supremum of the flat dimensions of R-modules with finite flat dimensions. For
an R-module M , M is said to be have finite projective resolution, denoted by
M ∈ FPR, if there exist a positive integer n and an exact sequence

0 −→ Pn −→ · · · −→ P1 −→ P0 −→ M → 0

with each Pi is finitely generated and projective. The small finitistic dimension
of R, denoted by fPD(R), is the supremum of the projective dimensions of R-
modules in FPR. It is clear that for a ring R, fPD(R) ≤ FFD(R) ≤ FPD(R)
and if w.gl.dim(R) < ∞, then FFD(R) = w.gl.dim(R). It is worth noting in
[9, Theorem 3.2] that for any ring R, FFD(R) ≤ IFD(R), where IFD(R) is
defined to be sup{fdRE |E is an injective R-module}.

Using those finitistic dimensions, some important ring-theoretic properties
can be characterized. For example, it is well-known in [13] that the finitistic
dimension FPD(R) over a Noetherian ring R coincides with the Krull dimension
dim(R). In [15, Theorem 4.1], it was proved that the finitistic weak dimension
of a pseudo-valuation domain but not a valuation domain is 1 or 2. Recently,
Zhang and Wang in [20, Corollary 3.7] gives an important relationship between
DW-rings and their small finitistic dimensions, and they prove that a ring R
is a DW-ring if and only if fPD(R) ≤ 1. Using this result, we can further
characterize Dedekind domains from the point view of factor rings, and we
need to establish the following proposition.

Proposition 12. An integral domain R is a DW-domain if and only if

fPD(R/(a)) = 0

for any nonzero nonunit a of R.

Proof. [20, Corollary 3.7] gives that R is a DW-domain if and only if fPD(R) ≤
1. Thus the result follows immediately from [17, Theorem 4.13]. □

Recall that a ring R is called an IF-ring if every injective R-module is flat. If
R is a QF-ring, then every injective R-module is projective. So every QF-ring
is an IF-ring.

Theorem 13. The following statements are equivalent for an integral domain
R.
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(1) R is Dedekind.
(2) R/I is a QF-ring for any nonzero proper ideal I of R.
(3) G-gl.dim(R/I) = 0 for any nonzero proper ideal I of R.

Proof. (1) ⇒ (2) Since R is a Dedekind domain, R is a DW-domain and a
Krull domain. Let I be any nonzero proper ideal of R. Then R/I = (R/I)w.
By Theorem 8, it follows that R/I is a QF-ring.

(2) ⇒ (1) Let a be any nonzero nonunit of R and let T = R/(a). Since
T is a QF-ring, T an IF-ring. Hence every injective T -module is flat. And
so IFD(T ) = 0. By [9, Theorem 3.2], we have FFD(T ) ≤ IFD(T ). It follows
that FFD(T ) = 0. Also since fPD(T ) ≤ FFD(T ), we have fPD(T ) = 0. Since
a is arbitrary nonzero nonunit in R, we conclude from Proposition 12 that R
is a DW-domain. Thus (R/I)w = R/I is a QF-ring for any nonzero proper
ideal I of R. So R is also a Kull domain by Theorem 9. It means that R is a
DW-domain and a Krull domain. So R is a Dedekind domain.

(2) ⇔ (3) This follows from [6, Proposition 2.6]. □

Now we give an example to show that the w-factor ring is different from the
factor ring.

Example 14. Let Z be the ring of integer numbers. Then the polynomial ring
Z[X] is a Krull domain but not a DW-domain. Note that (X) is a maximal
w-ideal of Z[X]. So (Z[X]/(X))W is a field by [18, Theorem 4.5(2)], where W
is the w-operation over Z[X]. However, Z[X]/(X) is a PID. Thus Z[X]/(X) ⊂
(Z[X]/(X))W . Let Q be the field of the rational numbers. We remain denoting
by Q the quotient field of Z[X]/(X). Then Q ⊆ (Z[X]/(X))W . But since Q is
the injective hull of Z[X]/(X), we have Q = (Z[X]/(X))W .

Applying Theorem 9, we can provide a new approach to construct lots of
non-trivial QF-rings.

Example 15. As Example 14, let R = Z[X] and P = (X). Then for any
positive integer k > 1, the w-factor ring (R/(P k)w)w of R modulo (P k)w is a
QF-ring by Theorem 9. Since R is an SM-domain, it follows from Lemma 3
that (P k)w ⊂ P . Hence 0 ̸= (P k)w and (P k)w is not a maximal w-ideal of R.
So (R/(P k)w)w is not a field by [18, Theorem 4.5(2)]. Thus (R/(P k)w)w is a
QF-ring but not a field.
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