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ON SIGNLESS LAPLACIAN SPECTRUM OF THE ZERO DIVISOR

GRAPHS OF THE RING Zn

S. Pirzada∗,†, Bilal A. Rather, Rezwan Ul Shaban, and Merajuddin

Abstract. For a finite commutative ring R with identity 1 6= 0, the zero divisor
graph Γ(R) is a simple connected graph having vertex set as the set of nonzero zero
divisors of R, where two vertices x and y are adjacent if and only if xy = 0. We find
the signless Laplacian spectrum of the zero divisor graphs Γ(Zn) for various values
of n. Also, we find signless Laplacian spectrum of Γ(Zn) for n = pz, z ≥ 2, in terms
of signless Laplacian spectrum of its components and zeros of the characteristic
polynomial of an auxiliary matrix. Further, we characterise n for which zero divisor
graph Γ(Zn) are signless Laplacian integral.

1. Introduction

Throughout this paper, we consider only connected, undirected, simple and finite
graphs. A graph is denoted by G = G(V (G), E(G)), where V (G) = {v1, v2, . . . , vn} is
its vertex set and E(G) is its edge set. |V (G)| = n is the order and |E(G)| = m is the
size of G. The neighborhood of a vertex v, denoted by N(v), is the set of vertices of
G adjacent to v. The degree of v, denoted by dG(v) (we simply dv) is the cardinality
of N(v). A graph is said to be regular if each of its vertex has the same degree. The
adjacency matrix A = (aij) of G is a (0, 1)-square matrix of order n, whose (i, j)-
entry is equal to 1, if vi is adjacent to vj and equal to 0, otherwise. Let Deg(G) =
diag(d1, d2, . . . , dn) be the diagonal matrix of vertex degrees di = dG(vi), i = 1, 2, . . . , n
associated to G. The matrices L(G) = Deg(G)− A(G) and Q(G) = Deg(G) + A(G)
are respectively the Laplacian and the signless Laplacian matrices. Their spectrum are
respectively the Laplacian spectrum and signless Laplacian spectrum of the graph G.
These matrices are real symmetric and positive semi-definite having real eigenvalues
which can be ordered as λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) and µ1(G) ≥ µ2(G) ≥ · · · ≥
µn(G) respectively. More about Laplacian and signless Laplacian matrices can be
seen in [7, 8, 11–13,15] and the references therein.

Let R be a commutative ring with multiplicative identity 1 6= 0. A nonzero element
x ∈ R is called a zero divisor of R if there exists a nonzero element y ∈ R such
that xy = 0. The zero divisor graphs of commutative rings were first introduced by

Received February 13, 2020. Accepted January 12, 2021. Published online March 30, 2021.
2010 Mathematics Subject Classification: 05C50, 05C12, 15A18.
Key words and phrases: Signless Laplacian matrix; zero divisor graph, finite commutative ring.
∗ Corresponding author.
† This research is supported by the SERB-DST research project number MTR/2017/000084.
© The Kangwon-Kyungki Mathematical Society, 2021.
This is an Open Access article distributed under the terms of the Creative commons Attribution

Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any
medium, provided the original work is properly cited.



14 S. Pirzada, Bilal A. Rather, Rezwan Ul Shaban, and Merajuddin

Beck [4], in the definition he included the additive identity and was interested mainly
in coloring of commutative rings. Later Anderson and Livingston [2] modified the
definition of zero divisor graphs and excluded the additive identity of the ring in the
zero divisor set. Zero divisor graphs are simple, connected and undirected graphs
having vertex set as the set of nonzero zero divisors, in which two vertices x and y are
connected by an edge if and only if xy = 0. The zero divisor graph of Zn is of order
n − φ(n) − 1, where φ is Euler’s totient function. Adjacency and Laplacian spectral
analysis has been done in [6,16,19]. More literature about zero divisor graphs can be
found in [1, 2, 10] and the references therein.

For any graph G, we write Spec(G) to represent the spectrum of G which contains
its eigenvalues including multiplicities. If vertices x and y are adjacent in G, we
write x ∼ y. We use standard notations, Kn and Ka,b, for complete graph and
complete bipartite graph, respectively. Other undefined notations and terminology
from algebraic graph theory, algebra and matrix theory can be found in [3, 7, 9, 14].

The rest of the paper is organized as follows. In Section 2, we mention some basic
definitions and results. In Section 3, we discuss the signless Laplacian spectrum of
the zero divisor graph Γ(Zn) for some values of n ∈ {pq, p2q, (pq)2}. We find signless
Laplacian spectrum of Γ(Zn) for n = pz, z ≥ 2 in terms of signless Laplacian spectrum
of components of Γ(Zn) and zeros of characteristic polynomial of an auxiliary matrix
and show that Γ(Zn) is signless Laplacian integral, for n ∈ {p2, pq}. We have used
computational software Wolfram Mathematica for computing approximate eigenvalues
and characteristic polynomials of various matrices.

2. Preliminaries

We start the section with the definitions and previously known results which
are used in proving the main results of the next section.

Definition 2.1. Let G(V,E) be a graph of order n having vertex set {1, 2, . . . , n}
andGi = Gi(Vi, Ei) be disjoint graphs of order ni, 1 ≤ i ≤ k. The graphG[G1, G2, . . . , Gn]
is formed by taking the graphs G1, G2, . . . , Gn and joining each vertex of Gi to every
vertex of Gj whenever i and j are adjacent in G.

This graph operation G[G1, G2, . . . , Gn] is called generalized join graph operation
[5], or generalized composition [17] or G-join operation [7]. If G = K2, the K2−join
is the usual join operation, namely G1OG2. Herein, we follow the later name with
notation G[G1, G2, . . . , Gn] and call it G-join. Schwenk [17] determined the adjacency
spectra of G-join of regular graphs. In [5], Laplacian spectra of G-join of arbitrary
graphs has been determined and in [18] normalized Laplacian and signless Laplacian
spectra of the G-join of regular graphs is computed.

An integer d is called a proper divisor of n if d divides n, 1 < d < n and is written as
d|n. Let d1, d2, . . . , dt be the distinct proper divisors of n. Let Υn be the simple graph
with vertex set {d1, d2, . . . , dt}, in which two distinct vertices are connected by an
edge if and only if n|didj. If n has the prime power factorization pn1

1 p
n2
2 . . . pnr

r , where
r, n1, n2, . . . , nr are positive integers and p1, p2, . . . , pr are distinct prime numbers, the
order of the Υn is given by

|V (Υn)| =
r∏
i=1

(ni + 1)− 2.



On signless Laplacian spectrum of the zero divisor graphs of the ring Zn 15

This Υn is connected [6] and plays a fundamental role in the sequel. For 1 ≤ i ≤ t,
we consider the following sets

Adi = {x ∈ Zn : (x, n) = di},

where (x, n) represents greatest common divisor of x and n. We see that Adi∩Adj = ∅,
when i 6= j, implying that the sets Ad1 , Ad2 , . . . , Adt are pairwise disjoint and partitions
the vertex set of Γ(Zn) as

V (Γ(Zn)) = Ad1 ∪ Ad2 ∪ · · · ∪ Adt .

From the definition of Adi , a vertex of Adi is adjacent to the vertex of Adj in Γ(Zn) if
and only if n divides didj , for i, j ∈ {1, 2, . . . , t} [6].
The following result [19] gives the cardinality of Adi .

Lemma 2.2. Let d divides n. Then |Adi | = φ
(
n
di

)
, for 1 ≤ i ≤ t.

The next lemma [6] shows the that induced subgraphs Γ(Adi) of Γ(Zn) are either
cliques or their complements.

Lemma 2.3. The following hold.

(i) For i ∈ {1, 2, . . . , t}, the induced subgraph Γ(Adi) of Γ(Zn) on the vertex set Adi
is either the complete graph K

φ
(

n
di

) or its complement K
φ
(

n
di

). Indeed, Γ(Adi)

is K
φ
(

n
di

) if and only n divides d2i .

(ii) For i, j ∈ {1, 2, . . . , t} with i 6= j, a vertex of Adi is adjacent to either all or none
of the vertices in Adj of Γ(Zn).

The following lemma shows that Γ(Zn) is a G-join of certain complete graphs and
null graphs.

Lemma 2.4. [6] Let Γ(Adi) be the induced subgraph of Γ(Zn) on the vertex set Adi
for 1 ≤ i ≤ t. Then Γ(Zn) = Υn[Γ(Ad1),Γ(Ad2), . . . ,Γ(Adt)].

Next, we mention the statement of a result of [18] that gives the signless Laplacian
spectrum of G-join of graphs in terms of signless Laplacian spectrum of its components
and eigenvalues of an auxiliary matrix.

Theorem 2.5. [18] Let H be a graph with V (H) = {1, 2, . . . , t}, and Gi’s be ri-
regular graphs of order ni (i = 1, 2, . . . , t). If G = H[G1, G2, · · · , Gt], then signless
Laplacian spectrum of G can be computed as follows.

SpecQ(G) =

(
t⋃
i=1

(
Ni +

(
SpecQ(Gi)\{2ri}

)))⋃
Spec(CQ(H)),

where

Ni =


∑

j∈NH(i)

nj, NH(i) 6= ∅

0, otherwise

,
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and

CQ(H) = (cij)t×t =


2ri +Ni, i = j,

√
ninj, ij ∈ E(H),

0 otherwise.

The next observation is a consequence of Theorem 2.5 and the proof follows trivially.

Proposition 2.6. The G-join graph is signless Laplacian integral if and only if
each of Gi is signless Laplacian integral and the matrix CQ(G) is integral.

3. Main results

We recall that Γ(Zn) is a complete graph if and only if n = p2 for some
prime p. Further the signless Laplacian spectrum of Kω and Kω on ω vertices are
{2ω− 2, (ω− 2)[ω−1]} and {0[ω]}, respectively. By Lemma 2.3, Γ(Adi) is either K

φ
(

n
di

)
or its complement K

φ
(

n
di

) for 1 ≤ i ≤ t. So by Theorem 2.5, out of n−φ(n)−1 number

of signless Laplacian eigenvalues of Γ(Zn), n− φ(n)− 1− t of them are known to be
non-negative integers. The remaining t signless Laplacian eigenvalues of Γ(Zn) will
be calculated from the zeros of the characteristic polynomial of the matrix CQ(H).

We start with an example of Γ(Zn), for n = 30 and find its signless Laplacian
spectrum with the help of Theorem 2.5.

Example 3.1. Signless Laplacian spectrum of Γ(Z30).

Let n = 30. Then 2, 3, 5, 6, 10 and 15 are the proper divisors of n and Υn is the
graph G6 : 3 ∼ 10 ∼ 6 ∼ 5,10 ∼ 15 ∼ 2 and 6 ∼ 15, that is, Υn is a triangle having
pendent vertex at each vertex of the triangle as shown in Figure (1). Ordering the
vertices by increasing divisor sequence and applying Lemma 2.4, we have

Γ(Z30) = Υ30[K8, K4, K24, K4, K2, K1].

By Theorem 2.5, the signless Laplacian spectrum of Γ(Z30) consists of the eigenvalues
{1[7], 2[4], 3[3], 11} and the remaining eigenvalues are given by

1 0 0 0 0
√

8

0 2 0 0
√

8 0

0 0 4
√

8 0 0

0 0
√

8 5
√

8 2

0
√

8 0
√

8 9
√

2√
8 0 0 2

√
2 14

 .

The characteristic polynomial of above matrix is

x6 − 35x5 + 413x4 − 1917x3 + 3098x2 − 1624x+ 256

and its approximated zeros are

{15.6845, 10.4343, 6.39444, 1.70695, 0.483479, 0.29642}.
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Figure 1. Proper divisor graph Υ30 and zero divisor graph Γ(Z30)

Now, we discuss the signless Laplacian spectrum of Γ(Zn) for n ∈ {pq, p2q, (pq)2, p3,
p4, pz, z ≥ 2}, with the help of Theorem 2.5. Let n = pq, where p < q are primes.
Then, by Lemma 2.3 and Lemma 2.4, we have

Γ(Zpq) = Υpq[Γ(Ap),Γ(Aq)] = K2[Kφ(p), Kφ(q)]

= Kφ(p)OKφ(q) = Kφ(p),φ(q).
(1)

In the next lemma, we find the signless Laplacian spectrum of Γ(Zn) for n = pq with
p < q.

Lemma 3.2. The signless Laplacian spectrum of Γ(Zpq) is {0, (q − 1)[p−2], (p −
1)[q−2], p+ q − 2}.

Proof. Let n = pq, where p and q (p < q) are primes. The proper divisors of n are
p and q, and so Υpq is K2. By Theorem 2.5, (N1, N2) = (q− 1, p− 1). From equation
(1), the signless Laplacian spectrum of Γ(Zn) consists of the eigenvalue q − 1 with
multiplicity p − 2, the eigenvalue p − 1 with multiplicity q − 2 and remaining two
eigenvalues are given by the matrix(

q − 1
√

(p− 1)(q − 1)√
(p− 1)(q − 1) p− 1

)
.

Proposition 3.3. The signless Laplacian spectrum of Γ(Zp2q) is{
(q − 1)[p

2−p−1], (p2 − 1)[q−2], (p− 1)[pq−p−q], (pq + p− 3)[p−2], x1, x2, x3, x4

}
where x1 ≥ x2 ≥ x3 ≥ x4 are the zeros of the characteristic polynomial of the matrix
CQ(P4).

Proof. Let n = p2q, where p and q are distinct primes. Since proper divisors of n
are p, q, pq, p2, so Υp2q is the path P4 : q ∼ p2 ∼ pq ∼ p. By Lemma 2.4, we have

Γ(Zp2q) = Υp2q[Γ(Aq),Γ(Ap2),Γ(Apq),Γ(Ap)]

= P4[Kφ(p2), Kφ(q), Kφ(p), Kφ(pq)].

Now, by Theorem 2.5, (N1, N2, N3, N4) = (q− 1, p2− 1, pq− p, p− 1) and the signless
Laplacian spectrum of Γ(Zp2q) consists of the eigenvalue q − 1 with multiplicity p2 −
p−1, the eigenvalue p2−1 with multiplicity q−2, the eigenvalue p−1 with multiplicity
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pq − p− q, the eigenvalue N3 + 2r3 = 2p− 4 + pq − p = pq + p− 4 with multiplicity
p− 2 and the remaining four eigenvalues are given by the matrix CQ(P4)

q − 1
√

(p2 − p)(q − 1) 0 0√
(p2 − p)(q − 1) p2 − 1

√
(p− 1)(q − 1) 0

0
√

(p− 1)(q − 1) pq + p− 4 b
0 0 b p− 1

 ,

where b =
√

(p− 1)(pq − p− q + 1).

Proposition 3.4. The signless Laplacian spectrum of Γ(Z(pq)2) is

{(p− 1)[φ(pq
2)−1], (p2 − 1)[φ(q

2)−1], (q − 1)[φ(p
2q)−1], (q2 − 1)[φ(p

2)−1],

(p(q − 1)− 2)[φ(pq)−1], ((q − 1)(pq + 1) + p− 3)[φ(p)],

((p− 1)(pq + q) + q − 3)[φ(q)−1]}

and the zeros of the characteristic polynomial of the matrix CQ(G7) in (3).

Proof. Let n = (pq)2, where p and q (p < q) are distinct primes. Since proper
divisors of n are p, p2, q, q2, pq, pq2, p2q, so Υ(pq)2 is the graph G7 : q ∼ p2q ∼ q2 ∼
p2 ∼ pq2 ∼ p, p2q ∼ pq ∼ pq2 ∼ p2q. By Lemma 2.4, we have

Γ(Z(pq)2) =Υ(pq)2 [Γ(Aq),Γ(Ap2q),Γ(Aq2),Γ(Ap2),Γ(Apq2),Γ(Ap),Γ(Apq)]

= G7[Kφ(p2q), Kφ(q), Kφ(p2), Kφ(q2), Kφ(p), Kφ(pq2), Kφ(pq)].

We name the vertices in G7 according to the proper divisor sequence so that n1 =
φ(pq2), n2 = φ(q2), n3 = φ(p2q), n4 = φ(p2), n5 = φ(pq), n6 = φ(p) and n7 = φ(q).
Also, we have(

N1,N2, N3, N4, N5, N6, N7

)
(2)

=
(
p− 1, p2 − 1, q − 1, q2 − 1, p+ q − 2, p(q2 − 1), (p− 1)(pq − p)

)
.

By theorem 2.5, the signless Laplacian spectrum of Γ(Z(pq)2) consists of the eigenvalue
N1 = p− 1 with multiplicity φ(pq2)− 1, the eigenvalue N2 = p2 − 1 with multiplicity
φ(q2) − 1, the eigenvalue N3 = q − 1 with multiplicity φ(p2q) − 1, the eigenvalue
N4 = q2 − 1 with multiplicity φ(p2) − 1, the eigenvalues N5 + φ(pq) − 2 = pq − 3
with multiplicity φ(pq)− 1, the eigenvalue N6 + φ(p)− 2 = pq2 − 3 with multiplicity
φ(p) − 1, the eigenvalue N7 + φ(q) − 2 = (p − 1)(pq + q) + q − 3 with multiplicity
φ(q) − 1 and the remaining seven eigenvalues are the eigenvalues of matrix CQ(G7)
given in (3).

(3)



N1 0 0 0 0
√
n1n6 0

0 N2 0
√
n2n6 0

√
n2n6 0

0 0 N3 0 0 0
√
n3n7

0
√
n2n4 0 N4 0 0

√
n4n7

0 0 0 0 2r5 +N5
√
n5n6

√
n5n7√

n1n6
√
n2n6 0 0

√
n5n6 2r6 +N6

√
n6n7

0 0
√
n3n7

√
n4n7

√
n5n7

√
n6n7 2r6 +N7


,

where, 2r5+N5 = 2(p−1)(q−1)+q−3, 2r6+N6 = 2(p−2)+(q−1)(pq+1), and 2r7+
N7 = 2(q − 1) + (p− 1)(pq + q).
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Now, we determine the signless Laplacian spectrum of Γ(Zpz), where p is prime
and z is positive integer.

Theorem 3.5. Let n = pz where p > 2 is prime and z ≥ 2 is a positive integer.
Then the following hold.

(i) If z = 2, then the signless Laplacian spectrum of Γ(Zn) is

{2p− 4, (p− 3)[p−2]}.

(ii) If n = p2m for some positive integer m ≥ 2, then the signless Laplacian spectrum
of Γ(Zn) is{

(p− 1)[φ(p
2m−1)−1], (p2 − 1)[φ(p

2m−2)−1], . . . , (pm−2 − 1)[φ(p
m+2)−1],

(pm−1 − 1)[φ(p
m+1)−1]

}⋃{
(pm − 3)[φ(p

m)−1], (pm+1 − 3)[φ(p
m−1)−1],

. . . , (p2m−2 − 3)[φ(p
2)−1], (p2m−1 − 3)[φ(p)−1]

}
and the remaining signless Laplacian eigenvalues of Γ(Zn) are the zeros of the
characteristic polynomial of the matrix given in (4).

(iii) If n = p2m+1 for some positive integer m ≥ 2, then the signless Laplacian
spectrum of Γ(Zn) is{

(p− 1)[φ(p
2m)−1], (p2 − 1)[φ(p

2m−1)−1], . . . , (pm−1 − 1)[φ(p
m+2)−1],

(pm − 1)[φ(p
m+1)−1]

}⋃{
(pm+1 − 3)[φ(p

m)−1], (pm+2 − 3)[φ(p
m−1)−1],

. . . , (p2m−1 − 3)[φ(p
2)−1], (p2m − 3)[φ(p)−1]

}
,

and the remaining signless Laplacian eigenvalues of Γ(Zn) are the zeros of the
characteristic polynomial of the matrix given in (5).

Proof. (i). Since Γ(Zp2) = Γ(Ap) is the complete graph Kp−1, the result follows for
p > 2.

(ii). Let z be even, that is, z = 2m, for some positive integer m ≥ 2. Then the
proper divisors of n are p, p2, . . . , p2m−1. We observe that the vertex pi is adjacent
to the vertex pj in Υp2m , for each j ≥ 2m − i with 1 ≤ i ≤ 2m − 1 and i 6= j. For

i = 1, 2, . . . , 2m− 2, 2m− 1, it is easy to see that Ni =
m−1∑
i=1

φ(pi). Using the fact that

r∑
i=1

φ(pr) = pr − 1, we have(
N1, N2, . . . , Nm−2, Nm−1

)
=
(
p− 1, p2 − 1, . . . , pm−2 − 1, pm−1 − 1

)
.

Similarly, for i = m,m+ 1, . . . , 2m− 2, 2m− 1, we have

Ni =
i∑

j=1

φ(pj)− φ(p2m−i) = pi − 1− φ(p2m−i).
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So, (
Nm, Nm+1, . . . , N2m−2, N2m−1

)
=
(
pm−1 − 1, pm+1 − 1− pm−1 + pm−2,

. . . , p2m−2 − 1− p2 + p, p2m−1 − p
)

Since n does not divide (pi)2, for i = 1, 2, . . . ,m − 1, therefore Gi = Kφ(p2m−i) for
i = 1, 2, 3, . . . ,m − 1 and Gi = Kφ(p2m−i) for i = m,m + 1, . . . , 2m − 2, 2m − 1. This
implies that 2ri+Ni = pi−1 for i = 1, 2 . . . ,m−1, and 2ri+Ni = pi+φ(p2m−i)−3 for
i = m, . . . , 2m− 2, 2m− 1. Also, order of Gi’s are ni = φ(p2m−i). Thus, by Theorem
2.5, we have

SpecQ(Γ(Zn)) =
{

(p− 1)[φ(p
2m−1)−1], (p2 − 1)[φ(p

2m−2)−1], . . . ,

(pm−2 − 1)[φ(p
m+2)−1], (pm−1 − 1)[φ(p

m+1)−1]
}

⋃{
2m−1⋃
i=m

(
Ni +

(
Spec

(
Kφ(p2m−i)

)
r {2ri}

))}
and the eigenvalues of matrix (4).

(4)


Am Bm×(m−1)

cm+1 · · · am+1,2m−2 am+1,2m−1

BT ...
. . .

...
...

a2m−2,m+1 · · · c2m−2 a2m−2,2m−1
a2m−1,m+1 · · · a2m−1,2m−2 c2m−1

 ,

where Am = diag(N1, N2, . . . , Nm−1, cm),

B =


0 . . . 0 a1,2m−1
0 . . . a2,2m−2 a2,2m−1
...

. . .
...

...
am−1,m+1 . . . am−1,2m−2 am−1,2m−1
am,m+1 . . . am,2m−2 am,2m−1


and ai,j = aj,i =

√
ninj, for 1 ≤ i, j ≤ 2m − 1, ci = 2ri + Ni, for i = m,m +

1, . . . , 2m− 1.

Since the signless Laplacian spectrum of Kφ(p2m−i) is{
2φ(p2m−i)− 2, (φ(p2m−i)− 2)φ(p

2m−i)−1
}

and using Ni = pi − 1− φ(p2m−i) for i = m, . . . , 2m− 1, we can easily see that

2m−1⋃
i=m

(
Ni +

(
Spec

(
Kφ(p2m−i)

)
\ {2ri}

))
=

{
(pm − 3)[φ(p

m)−1],

(pm+1 − 3)[φ(p
m−1)−1], . . . , (p2m−2 − 3)[φ(p

2)−1], (p2m−1 − 3)[φ(p)−1]
}
.

(iii). Let n = 2m+ 1 be odd, where m ≥ 2 is a positive integer. The proper divisors
of n are p, p2, . . . , p2m. We observe that the vertex pi is adjacent to the vertex pj in
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Υp2m for each j ≥ 2m + 1− i with 1 ≤ i ≤ 2m and i 6= j. For i = 1, 2, . . . ,m− 1,m,

it can be easily verified that Ni =
m∑
i=1

φ(pi), and using the fact that
r∑
i=1

φ(pr) = pr− 1,

we have (
N1, N2, . . . , Nm−1, Nm

)
=
(
p− 1, p2 − 1, . . . , pm−1 − 1, pm − 1

)
.

For i = m+ 1,m+ 2, . . . , 2m− 1, 2m, we have

Ni =
i∑

j=1

φ(pj)− φ(p2m+1−i) = pi − 1− φ(p2m+1−i).

This further implies that(
Nm+1, Nm+2, . . . , N2m−1, N2m

)
=
(
pm+1 − 1− pm + pm−1,

pm+2 − 1− pm−1 + pm−2, . . . , p2m−1 − 1− p2 + p, p2m − p
)
.

Also Gi = Kφ(p2m+1−i) for i = 1, 2, 3, . . . ,m and Gi = Kφ(p2m+1−i) for i = m +
1, . . . , 2m − 1, 2m, which implies that ri + ni = pi − 1 for i = 1, 2, 3, . . . ,m and
2ri +Ni = 2φ(p2m+1−i)− 2 +Ni = pi + φ(p2m+1−i)− 3 for i = m+ 1, . . . , 2m− 1, 2m.
Thus, order of Gi’s are ni = φ(p2m+1−i). Therefore, by Theorem 2.5, we have

SpecQ(Γ(Zn)) =
{

(p− 1)[φ(p
2m)−1], (p2 − 1)[φ(p

2m−1)−1], . . . ,

(pm−1 − 1)[φ(p
m+2)−1], (pm − 1)[φ(p

m+1)−1]
}

⋃{ 2m⋃
i=m+1

(
Ni +

(
Spec

(
Kφ(p2m+1−i)

)
r {2ri}

))}
,

and the eigenvalues of the following matrix

(5)


Am+1 B(m+1)×m

cm+2 · · · am+2,2m−1 am+2,2m

BT ...
. . .

...
...

a2m−1,m+2 · · · c2m−1 a2m−1,2m
a2m,m+2 · · · a2m,2m−1 c2m

 ,

where Am = diag(N1, N2, . . . , Nm, cm+1),

B =


0 . . . 0 a1,2m
0 . . . a2,2m−1 a2,2m
...

. . .
...

...
am,m+1 . . . am,2m−1 am,2m
am+1,m+1 . . . am+1,2m−1 am+1,2m


and ai,j = aj,i =

√
ninj, for 1 ≤ i, j ≤ 2m, ci = 2ri +Ni, for i = m+ 1,m+ 2 . . . , 2m.

The signless Laplacian spectrum of Kφ(p2m+1−i) is

{2φ(p2m+1−i)− 2, (φ(p2m+1−i)− 2)φ(p
2m+1−i)−1}.
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Using Ni = pi − 1− φ(p2m+1−i) for i = m, . . . , 2m− 1, we can easily verify that

2m⋃
i=m+1

(
Ni +

(
Spec(Kφ(p2m+1−i)) r {2ri}

))
=

{
(pm+1 − 3)[φ(p

m)−1],

(pm+2 − 3)[φ(p
m−1)−1], . . . , (p2m−1 − 3)[φ(p

2)−1], (p2m − 3)[φ(p)−1]
}
.

This completes the proof in both the cases.

The next two corollaries follow from Theorem 3.5 for particular values of n. These
help in showing that Γ(Zpz), z > 2 is not in general signless Laplacian integral.

Corollary 3.6. If n = p3, then the signless Laplacian spectrum of Γ(Zn) is{
(p− 1)[p

2−p−1], (p2 − 3)[p−2],
1

2

(
p2 − 3±

√
p4 − 6p2 + 8p+ 1

)}
.

Proof. Since proper divisors of n are p and p2, therefore Υn is K2 : p ∼ p2. By
Lemma 2.4, we have

Γ(Zp3) = Υp3 [Γ(Ap),Γ(Ap2)] = K2[Kφ(p2), Kφ(p)] = Kp(p−1)OKp−1.

This implies that Γ(Zp3) is a complete split graph of order p2− 1, having an indepen-
dent set of cardinality p(p − 1) and a clique of size p − 1. By Theorem 3.5, we have
(N1, N2) = (p− 1, p2 − p), and

(6) CQ(K2) =

(
p− 1

√
(p− 1)(p2 − p)√

(p− 1)(p2 − p) p2 + p− 2

)
.

As r1 = 0, so the signless Laplacian spectrum of Γ(Zn) consists of the eigenvalue
N1 = p− 1 with multiplicity n1 − 1 = p2 − p− 1, the eigenvalue N2 + (Spec(Kp−1) \
{2(p − 2)}) = p2 − p + p − 3 with multiplicity p − 2 and the remaining two signless
Laplacian eigenvalues are the zeros of the characteristic polynomial of the matrix in
(6).

Corollary 3.7. The signless Laplacian spectrum of Γ(Zn), where n = p4 is{
(p− 1)[p

3−p2−1], (p3 − 3)[p−2], (p2 − 3)[p
2−p−1], x1, x2, x3,

}
where x1 ≥ x2 ≥ x3 are the zeros of the characteristic polynomial of the matrix
CQ(P3).

Proof. As proper divisors of n are p, p2 and p3, so Υn is P3 : p ∼ p3 ∼ p2. By
Lemmas 2.2, 2.3 and 2.4, we have Γ(Ap) = Kφ(p3) = Kp2(p−1),Γ(Ap2) = Kφ(p2) =
Kp(p−1) and Γ(Ap3) = Kφ(p) = Kp−1. Therefore

Γ(Zp4) = Υp3 [Γ(Ap),Γ(Ap3),Γ(Ap2)] = P3[Kp2(p−1), Kp−1, Kp(p−1)]

= Kp−1O(Kp2(p−1) ∪Kp(p−1)).

Thus, by Theorem 3.5, we have (N1, N2, N3) = (p− 1, p3 − p, p− 1) and

CQ(P3) =

 p− 1
√

(p− 1)(p3 − p2) 0√
(p− 1)(p3 − p2) p3 + p− 4

√
(p− 1)(p2 − p)

0
√

(p− 1)(p2 − p) 2p2 − p− 3

 .
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Now, by Theorem 3.5, it is clear that the signless Laplacian eigenvalues are as given
in the statement.

A graph G is said to an signless Laplacian integral if all signless Laplacian eigen-
values are integers. The next theorem gives a necessary and sufficient condition for a
zero divisor graph Γ(Zn) to be signless Laplacian integral.

Theorem 3.8. The zero divisor graph Γ(Zn) is signless Laplacian integral if and
only if the matrix CQ(H) of Theorem 2.5 is integral.

As shown in [6], Γ(Zn) is Laplacian integral when n = pz for every prime p and
positive integer z ≥ 2. While the answer is in negative for signless Laplacian matrix,
however in general, Γ(Zn) is integral for certain values of n.

Theorem 3.9. Γ(Zn) is signless Laplacian integral if and only if n ∈ {p2, 4q, pq},
where p and q are primes. Further in such cases, Γ(Zn) is either a complete graph or
a complete bipartite graph.

Proof. If n is either prime power or product of two distinct primes, then by Lemma
3.2 and Theorem 3.5 part (i), we see that signless Laplacian eigenvalues of Γ(Zn) are
integers. Also, by Proposition 3.3, for p = 22, it is clear that Γ(Z4q) is the complete
bipartite graph and its signless Laplacian eigenvalues are integers. Conversely, if n is
a product of three primes, then by Example 3.1, we get at least 6 non integer signless
Laplacian eigenvalues of Γ(Zpqr), where p < q < r are primes. More generally, if n =
pn1
1 p

n2
2 . . . pnr

r , where r, n1, . . . , nr are non-negative integers and pi, i = 1, 2, . . . , r are

primes, then for r ≥ 3, Γ(Zn) contains the triangle
(

n
(p3)n3

)
∼
(

n
(p2)n2

)
∼
(

n
(p1)n1

)
∼(

n
(p3)n3

)
. This implies that Γ(Zn) is not complete bipartite and cannot be signless

Laplacian integral. Similarly, Γ(Zpn1
1 p

n2
2

), n1, n2 ≥ 2, contains the triangle pn1−1
1 pn2

2 ∼
p1p

n2−1
2 ∼ pn1

1 p
n2−1
2 ∼ pn1−1

1 pn2
1 . Therefore, its zero divisor graph is not complete

bipartite. Again, for n = p2q or n = pq2, by Proposition 3.4, CQ(Υn) is not integral.
For n = p3, p4, by Corollaries 3.6 and 3.7, we can verify that the eigenvalues of CQ(Υn)
are not integers. For n = pn1 , n1 ≥ 5, we observe that Γ(Zn) contains the triangle
pn1−3 ∼ pn1−2 ∼ pn1−1 ∼ pn1−3 and is not bipartite, so its all signless Laplacian
eigenvalues are not integers. Therefore, Γ(Zn) is signless Laplacian integral only for
n = p2, pq, 4q, where p and q (p < q) are primes.
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