• Title/Summary/Keyword: wheel graph

Search Result 23, Processing Time 0.022 seconds

PAIR DIFFERENCE CORDIAL NUMBER OF A GRAPH

  • R. PONRAJ;A. GAYATHRI
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.3_4
    • /
    • pp.127-139
    • /
    • 2024
  • Let G be a (p, q) graph. Pair difference cordial number of a graph G is the least positive integer m such that G∪mK2 is pair difference cordial. It is denoted by PDC𝜂(G). In this paper we find the pair difference cordial number of bistar, complete, helm, star, wheel.

k-PRIME CORDIAL GRAPHS

  • PONRAJ, R.;SINGH, RAJPAL;KALA, R.;NARAYANAN, S. SATHISH
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.3_4
    • /
    • pp.227-237
    • /
    • 2016
  • In this paper we introduce a new graph labeling called k-prime cordial labeling. Let G be a (p, q) graph and 2 ≤ p ≤ k. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called a k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with a k-prime cordial labeling is called a k-prime cordial graph. In this paper we investigate the k-prime cordial labeling behavior of a star and we have proved that every graph is a subgraph of a k-prime cordial graph. Also we investigate the 3-prime cordial labeling behavior of path, cycle, complete graph, wheel, comb and some more standard graphs.

MULTIPLICATIVELY WEIGHTED HARARY INDICES OF GRAPH OPERATIONS

  • Pattabiraman, K.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.89-100
    • /
    • 2015
  • In this paper, we present exact formulae for the multiplicatively weighted Harary indices of join, tensor product and strong product of graphs in terms of other graph invariants including the Harary index, Zagreb indices and Zagreb coindices. Finally, We apply our result to compute the multiplicatively weighted Harary indices of fan graph, wheel graph and closed fence graph.

THE EQUITABLE TOTAL CHROMATIC NUMBER OF THE GRAPH $HM(W_n)$

  • Wang, Haiying;Wei, Jianxin
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.313-323
    • /
    • 2007
  • The equitable total chromatic number ${\chi}_{et}(G)$ of a graph G is the smallest integer ${\kappa}$ for which G has a total ${\kappa}$-coloring such that the number of vertices and edges in any two color classes differ by at most one. In this paper, we determine the equitable total chromatic number of one class of the graphs.

A Study on the New Course Distance and the proper time to alter course (신침로거리와 전타시점에 관한 연구)

  • KIM, Min-Seok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.4
    • /
    • pp.586-591
    • /
    • 2009
  • The marine traffic accidents go on increasing owing to the increment of marine traffic capacity, and the solutions about these matters are vigorously considering by many researchers. When the watch officer navigates to the narrow channel, bend or an area obscured by an intervening obstruction and around the harbour limit he must follow the planned track. The watch officer can safely navigate along the course laid down only when he alters his course in advance before the new course distance earlier than the course alternation point. If we call this point to be changed in advance a turning bearing, the turning bearing is decided according to the direction and the range from the clearing objects. The turning bearing helps the watch officer to determine whether the ship is at wheel-over position or not. The author in this paper suggest how to make and use a curve graph which is decided according to the direction and the distance from the clearing objects. If the watch officer utilize this curve graph he can judge swiftly and precisely whether his ship is at the wheel - over position or not.

TOTAL DOMINATION NUMBER OF CENTRAL GRAPHS

  • Kazemnejad, Farshad;Moradi, Somayeh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1059-1075
    • /
    • 2019
  • Let G be a graph with no isolated vertex. A total dominating set, abbreviated TDS of G is a subset S of vertices of G such that every vertex of G is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a TDS of G. In this paper, we study the total domination number of central graphs. Indeed, we obtain some tight bounds for the total domination number of a central graph C(G) in terms of some invariants of the graph G. Also we characterize the total domination number of the central graph of some families of graphs such as path graphs, cycle graphs, wheel graphs, complete graphs and complete multipartite graphs, explicitly. Moreover, some Nordhaus-Gaddum-like relations are presented for the total domination number of central graphs.

CIRCULAR LIST COLORINGS OF SOME GRAPHS

  • WANG GUANGHUI;LIU GUIZHEN;YU JIGUO
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.149-156
    • /
    • 2006
  • The circular list coloring is a circular version of list colorings of graphs. Let $\chi_{c,l}$ denote the circular choosability(or the circular list chromatic number). In this paper, the circular choosability of outer planar graphs and odd wheel is discussed.

ON 4-TOTAL MEAN CORDIAL GRAPHS

  • PONRAJ, R.;SUBBULAKSHMI, S.;SOMASUNDARAM, S.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.497-506
    • /
    • 2021
  • Let G be a graph. Let f : V (G) → {0, 1, …, k - 1} be a function where k ∈ ℕ and k > 1. For each edge uv, assign the label $f(uv)={\lceil}{\frac{f(u)+f(v)}{2}}{\rceil}$. f is called k-total mean cordial labeling of G if ${\mid}t_{mf}(i)-t_{mf}(j){\mid}{\leq}1$, for all i, j ∈ {0, 1, …, k - 1}, where tmf (x) denotes the total number of vertices and edges labelled with x, x ∈ {0, 1, …, k-1}. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

PAIR MEAN CORDIAL LABELING OF SOME UNION OF GRAPHS

  • R. PONRAJ;S. PRABHU
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.55-69
    • /
    • 2024
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}=\{\array{{\frac{p}{2}} && p\;\text{is even} \\ {\frac{p-1}{2}} && p\;\text{is odd,}}$$ and M = {±1, ±2, … ± 𝜌} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{{\lambda}(u)+{\lambda}(v)}{2}$ if λ(u) + λ(v) is even and $\frac{{\lambda}(u)+{\lambda}(v)+1}{2}$ if λ(u) + λ(v) is odd such that ${\mid}\bar{\mathbb{s}}_{{\lambda}_1}-\bar{\mathbb{s}}_{{\lambda}^c_1}{\mid}\,{\leq}\,1$ where $\bar{\mathbb{s}}_{{\lambda}_1}$ and $\bar{\mathbb{s}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G with a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of some union of graphs.