PAIR MEAN CORDIAL LABELING OF SOME UNION OF GRAPHS

R. PONRAJ* AND S. PRABHU

$$
\begin{aligned}
& \text { AbStract. Let a graph } G=(V, E) \text { be a }(p, q) \text { graph. Define } \\
& \qquad \rho=\left\{\begin{array}{cl}
\frac{p}{2} & p \text { is even } \\
\frac{p-1}{2} & p \text { is odd }
\end{array}\right.
\end{aligned}
$$

and $M=\{ \pm 1, \pm 2, \cdots \pm \rho\}$ called the set of labels. Consider a mapping $\lambda: V \rightarrow M$ by assigning different labels in M to the different elements of V when p is even and different labels in M to $p-1$ elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge $u v$ of G, there exists a labeling $\frac{\lambda(u)+\lambda(v)}{2}$ if $\lambda(u)+\lambda(v)$ is even and $\frac{\lambda(u)+\lambda(v)+1}{2}$ if $\lambda(u)+\lambda(v)$ is odd such that $\left|\overline{\mathbb{S}}_{\lambda_{1}}-\overline{\mathbb{S}}_{\lambda_{1}^{c}}\right| \leq 1$ where $\overline{\mathbb{S}}_{\lambda_{1}}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G with a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of some union of graphs.

AMS Mathematics Subject Classification : 05C78.

Key words and phrases : Path, cycle, wheel graph, shell graph and pair mean cordial labeling.

1. Introduction

In this paper, a finite, simple, connected and undirected graph is known as a graph G. We use the terminologies, fundamental concepts and notations in graph theory as in [7] and referring to the study on graph labeling in [6]. In [3], the concept of cordial labeling was first established and also studied some cordial related graphs in [1,2,4,5,8-13,19-24]. We have introduced the notion of pair mean cordial labeling in [14] and examined the pair mean cordial labeling

[^0]behavior of several graphs in [14-18]. In this paper, we investigate the pair mean cordial labeling behavior of some union of graphs such as $P_{m} \cup P_{n}, P_{m} \cup C_{n}$, $P_{m} \cup S_{n}, P_{m} \cup W_{n}, C_{m} \cup C_{n}, C_{m} \cup S_{n}, W_{m} \cup W_{n}, W_{m} \cup C_{n}, S_{m} \cup S_{n}, S_{m} \cup W_{n}$.

2. Preliminaries

Definition 2.1. A graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions.

Definition 2.2. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Definition 2.3. The Shell S_{n} is the graph obtained by taking $n-3$ concurrent chord in cycle C_{n}. The vertex at which all the chords are concurrent is called the apex vertex.

Definition 2.4. A Wheel W_{n} is a graph with $n+1$ vertices, formed by connecting a single vertex to all the vertices of the cycle C_{n}. It is denoted by $W_{n}=C_{n}+K_{1}$.

3. Pair Mean Cordial Labeling

Definition 3.1. Let a graph $G=(V, E)$ be a (p, q) graph. Define

$$
\rho=\left\{\begin{array}{cl}
\frac{p}{2} & p \text { is even } \\
\frac{p-1}{2} & p \text { is odd }
\end{array}\right.
$$

and $M=\{ \pm 1, \pm 2, \cdots \pm \rho\}$ called the set of labels. Consider a mapping λ : $V \rightarrow M$ by assigning different labels in M to the different elements of V when p is even and different labels in M to $p-1$ elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge $u v$ of G, there exists a labeling $\frac{\lambda(u)+\lambda(v)}{2}$ if $\lambda(u)+\lambda(v)$ is even and $\frac{\lambda(u)+\lambda(v)+1}{2}$ if $\lambda(u)+\lambda(v)$ is odd such that $\left|\overline{\mathbb{S}}_{\lambda_{1}}-\overline{\mathbb{S}}_{\lambda_{1}^{c}}\right| \leq 1$ where $\overline{\mathbb{S}}_{\lambda_{1}}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G with a pair mean cordial labeling is called a pair mean cordial graph.
Theorem 3.2. The graph $P_{m} \cup P_{n}$ is pair mean cordial for all $m, n \geq 1$.
Proof. Let P_{m} be the path $u_{1} u_{2} \ldots u_{m}$ and P_{n} be the path $v_{1} v_{2} \ldots v_{n}$. Then $P_{m} \cup P_{n}$ has $m+n$ vertices and $m+n-2$ edges. We have the following two cases arise:
Case (i): m is odd
Let us assign the labels $1,2, \ldots, \frac{m+1}{2}$ respectively to the vertices $u_{1}, u_{3}, \ldots, u_{m}$ and $-1,-2, \ldots, \frac{-m+1}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m-1}$ respectively. Then there are two subcases that arise:
Subcase (i): n is odd
Let us now assign the labels $\frac{-m-1}{2}, \frac{-m-3}{2}, \ldots, \frac{-m-n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n}$ and $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively.

Subcase (ii): n is even
Furthermore we give the labels $\frac{-m-1}{25}, \frac{-m-3}{2}, \ldots, \frac{-m-n+1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n-1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-2}$ respectively. Thus we assign the label $\frac{-m-n+1}{2}$ to the vertex v_{n}.
Case (ii): m is even
In this case, we give the labels $-1,-2, \ldots, \frac{-m}{2}$ respectively to the vertices $u_{1}, u_{3}, \ldots, u_{m-1}$ and $2,3, \ldots, \frac{m+2}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m}$ respectively. There are two subcases that arise:
Subcase (i): n is odd
Now, we assign the labels $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n+1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ and $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n-1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-3}$ respectively. Finally, we assign the labels $1, \frac{-m-n+1}{2}$ to the vertices v_{n-1}, v_{n} respectively.
Subcase (ii): n is even
Next we give the labels $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-2}$ respectively. More over assign the label 1 to the vertex v_{n}.
The following table shows that this vertex labeling λ is a pair mean cordial of $P_{m} \cup P_{n}$ for all $m, n \geq 1$.

Nature of m and n	$\mathbb{S}_{\lambda_{1}}$	$\mathbb{S}_{\lambda_{1}}$
m is odd and n is odd	$\frac{m+n-2}{2}$	$\frac{m+n-2}{2}$
m is odd and n is even	$\frac{m+n-3}{2}$	$\frac{m+n-1}{2}$
m is even and n is odd	$\frac{m+n-3}{2}$	$\frac{m+n-1}{2}$
m is even and n is even	$\frac{m+n-2}{2}$	$\frac{m+n-2}{2}$

Table 1

Theorem 3.3. The graph $P_{m} \cup C_{n}$ is pair mean cordial for all $m \geq 1$ and $n \geq 3$.
Proof. Let P_{m} be the path $u_{1} u_{2} \ldots u_{m}$ and C_{n} be the cycle $v_{1} v_{2} \ldots v_{n} v_{1}$. Then the graph $P_{m} \cup C_{n}$ has $m+n$ vertices and $m+n-1$ edges. We have the following two cases arise:
Case (i): m is odd
There are two subcases that arise:
Subcase (i): n is odd
In this case, assign the labels to the vertices $u_{i}, v_{j}, 1 \leq i \leq m$ and $1 \leq j \leq n$ as in subcase (i) of case (i) of theorem 3.1.
Subcase (ii): n is even
Furthermore, assign the labels to the vertices $u_{i}, v_{j}, 1 \leq i \leq m$ and $1 \leq j \leq n-1$ as in subcase $(i i)$ of case (i) of theorem 3.1. Finally assign the label $\frac{m+3}{2}$ to the vertex v_{n}.
Case (ii): m is even
There are two subcases that arise:

Subcase (i): n is odd
In this case, assign the labels to the vertices $u_{i}, v_{j}, 1 \leq i \leq m$ and $1 \leq j \leq n-2$ as in subcase (i) of case ($i i$) of theorem 3.1. Finally, we assign the labels 1,1 to the vertices v_{n-1}, v_{n} respectively.
Subcase (ii): n is even
Furthermore, assign the labels to the vertices $u_{i}, v_{j}, 1 \leq i \leq m$ and $1 \leq j \leq n$ as in subcase (ii) of case (ii) of theorem 3.1.
The following table shows that this vertex labeling λ is a pair mean cordial of $P_{m} \cup C_{n}$ for all $m \geq 1$ and $n \geq 3$.

Nature of m and n	$\bar{S}_{\lambda_{1}}$	$\mathbb{S}_{\lambda_{1}}$
m is odd and n is odd	$\frac{m+n-2}{2}$	$\frac{m+n}{2}$
m is odd and n is even	$\frac{m+n-1}{2}$	$\frac{m+n-1}{2}$
m is even and n is odd	$\frac{m+n-1}{2}$	$\frac{m+n-1}{2}$
m is even and n is even	$\frac{m+n-2}{2}$	$\frac{m+n}{2}$

Table 2

Theorem 3.4. The graph $P_{m} \cup S_{n}$ is pair mean cordial for all $m \geq 1$ and $n \geq 4$.
Proof. Let $V\left(P_{m} \cup S_{n}\right)=\left\{u_{i}, v_{j}: 1 \leq i \leq m\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and $E\left(P_{m} \cup S_{n}\right)=$ $\left\{u_{i} u_{i+1}, v_{j} v_{j+1}, v_{n} v_{1}: 1 \leq i \leq m-1\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{v}_{1} \mathrm{v}_{\mathrm{j}+2}: 1 \leq \mathrm{j} \leq \mathrm{n}-3\right\}$. Hence it has $m+n$ vertices and $m+2 n-4$ edges. We have the following two cases arise:
Case (i): m is odd
Let us assign the labels $1,2, \ldots, \frac{m+1}{2}$ respectively to the vertices $u_{1}, u_{3}, \ldots, u_{m}$ and $-1,-2, \ldots, \frac{-m+1}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m-1}$ respectively. Then there are two subcases that arise:
Subcase (i): n is odd
First we assign the labels $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n}{2}$ respectively to the vertices v_{1}, v_{3}, \ldots, v_{n-2} and $\frac{-m-1}{2}, \frac{-m-3}{2}, \ldots, \frac{-m-n+2}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Furthermore, assign the label $\frac{-m-n}{2}$ to the vertex v_{n}.
Subcase (ii): n is even
Now we assign the labels $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n-1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-3}$ and $\frac{-m-1}{2}, \frac{-m-3}{2}, \ldots, \frac{-m-n+1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n}$ respectively. More over, assign the label $\frac{m+n-1}{2}$ to the vertex v_{n-1}.
Case (ii): m is even
Let us assign the labels $1,2, \ldots, \frac{m}{2}$ respectively to the vertices $u_{1}, u_{3}, \ldots, u_{m-1}$ and $-1,-2, \ldots, \frac{-m+2}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m-2}$ respectively. Hence there are two subcases that arise:
Subcase (i): n is odd
In this case, we assign the labels $\frac{m+2}{2}, \frac{m+4}{2}, \ldots, \frac{m+n-1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ and $\frac{-m}{2}, \frac{-m-2}{2}, \ldots, \frac{-m-n+3}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$
respectively. Also assign the label $\frac{m+n-1}{2}$ to the vertex v_{n}.
Subcase (ii): n is even
Now we assign the labels $\frac{m+2}{2}, \frac{m+4}{2}, \ldots, \frac{m+n}{2}$ respectively to the vertices v_{1}, v_{3}, \ldots, v_{n-1} and $\frac{-m}{2}, \frac{-m-2}{2}, \ldots, \frac{-m-n+2}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n}$ respectively. The following table shows that this vertex labeling λ is a pair mean cordial of $P_{m} \cup S_{n}$ for all $m \geq 1$ and $n \geq 4$.

Nature of m and n	$\overline{\mathbb{S}}_{\lambda_{1}}$	$\bar{S}_{\lambda_{1}}$
m is odd and n is odd	$\frac{m+2 n-2}{2}$	$\frac{m+2 n-6}{m+2}$
m is odd and n is even	$\frac{m+2 n-2}{2}$	$\frac{m+2 n-6}{2}$
m is even and n is odd	$\frac{m+2 n-4}{2}$	$\frac{m+2 n-4}{2}$
m is even and n is even	$\frac{m+2 n-4}{2}$	$\frac{m+2 n-4}{2}$

Table 3

Example 3.5. A pair mean cordial labeling of $P_{8} \cup S_{9}$ is shown in Figure 1.

FIGURE 1
Theorem 3.6. The graph $P_{m} \cup W_{n}$ is pair mean cordial for all $m \geq 2$ and $n \geq 3$ except for $m=3$ and n is even.

Proof. Let $V\left(P_{m} \cup W_{n}\right)=\left\{u_{i}, v, v_{j}: 1 \leq i \leq m\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and $E\left(P_{m} \cup W_{n}\right)=\left\{v v_{j}: 1 \leq j \leq n\right\} \cup\left\{u_{i} u_{i+1}, v_{j} v_{j+1}, v_{n} v_{1}: 1 \leq i \leq m-1\right.$ and $1 \leq$ $\mathrm{j} \leq \mathrm{n}-1\}$. Hence $P_{m} \cup W_{n}$ has $m+n+1$ vertices and $m+2 n-1$ edges. We have the following three cases arise:
Case (i): $m=3$
There are two subcases that arise:
Subcase (i): n is odd
Let us consider $\lambda\left(u_{1}\right)=1, \lambda\left(u_{2}\right)=1$ and $\lambda\left(u_{3}\right)=\frac{-n-3}{2}$. Next we give the labels $2,3, \ldots, \frac{n+3}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n}$ and $-1,-2, \ldots, \frac{-n+1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Then assign the label $\frac{-n-1}{2}$ to the vertex v.
Subcase (ii): n is even
Suppose $P_{3} \cup W_{n}$ is pair mean cordial. Now if the edge $u v$ get the label 1, the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Then the maximum number
of edges label with 1 is n. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq n$. Thus $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq n+2$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq n+2-n=2>1$, a contradiction.
Case (ii): m is odd
There are two subcases that arise:
Subcase (i): n is odd
In this case, we give the labels $1,2, \ldots, \frac{m-1}{2}$ respectively to the vertices u_{1}, u_{3}, \ldots, u_{m-2} and $-1,-2, \ldots, \frac{-m+3}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m-3}$ respectively. Assign the labels $\frac{-m+3}{2}, \frac{-m-n}{2}$ to the vertices u_{m-1}, u_{m} respectively. Next we give the labels $\frac{m+1}{2}, \frac{m+3}{2}, \ldots, \frac{m+n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n}$ and $\frac{-m+1}{2}, \frac{-m-1}{2}, \ldots, \frac{-m-n+4}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Hence assign the label $\frac{-m-n+2}{2}$ to the vertex v.
Subcase (ii): n is even
Let us consider $\lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=-1, \lambda\left(u_{3}\right)=3$ and $\lambda\left(u_{4}\right)=-2$. Then we give the labels $-3,-4, \ldots, \frac{-m+1}{2}$ respectively to the vertices $u_{5}, u_{7}, \ldots, u_{m-2}$ and $4,5, \ldots, \frac{m+1}{2}$ to the vertices $u_{6}, u_{8}, \ldots, u_{m-1}$ respectively. More over assign the label 1 to the vertex u_{m}. Next we give the labels $\frac{m+1}{2}, \frac{m+3}{2}, \ldots, \frac{m+n+1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and $\frac{-m-1}{2}, \frac{-m-3}{2}, \ldots, \frac{-m-n+1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n}$ respectively. Hence assign the label $\frac{-m-n-1}{2}$ to the vertex v.
Case (iii): m is even
Now give the labels $1,2, \ldots, \frac{m}{2}$ respectively to the vertices $u_{1}, u_{3}, \ldots, u_{m-1}$ and $-1,-2, \ldots, \frac{-m+2}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m-2}$ respectively. There are three subcases that arise:
Subcase (i): n is odd
Next assign the label $\frac{-m-n-1}{2}$ to the vertex u_{m}. Then we assign the labels $\frac{m+2}{2}, \frac{m+4}{2}, \ldots, \frac{m+n+1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n}$ and $\frac{-m}{2}, \frac{-m-2}{2}$, $\ldots, \frac{-m-n+3}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Hence assign the label $\frac{-m-n+1}{2}$ to the vertex v.
Subcase (ii): n is even
Now assign the label $\frac{-m-n}{2}$ to the vertex u_{m}. Next we assign the labels $\frac{m+2}{2}, \frac{m+4}{2}$, $\ldots, \frac{m+n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and $\frac{-m}{2}, \frac{-m-2}{2}, \ldots, \frac{-m-n+2}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n}$ respectively. Hence assign the label $\frac{m+2}{2}$ to the vertex v.
The following table shows that this vertex labeling λ is a pair mean cordial of $P_{m} \cup W_{n}$ for all $m \geq 2$ and $n \geq 3$ except for $m=3$ and n is even.

Remark 3.1. The graph $P_{1} \cup W_{n}$ is pair mean cordial for all $n \geq 5$ and n is odd.

Proof. The graph $P_{1} \cup W_{n}$ has $2 n+2$ vertices and $2 n$ edges. We have the following two cases arise:
Case (i): $n=3$ and n is even
Suppose $P_{1} \cup W_{n}$ is pair mean cordial. Now if the edge $u v$ get the label 1, the

Nature of m and n	$\mathbb{S}_{\lambda_{1}}$	$\mathbb{S}_{\lambda_{1}}$
m is odd and n is odd	$\frac{m+2 n-1}{2}$	$\frac{m+2 n-1}{2}$
m is odd and n is even	$\frac{m+2 n-1}{2}$	$\frac{m+2 n-1}{2}$
m is even and n is odd	$\frac{m+2 n-2}{2}$	$\frac{m+2 n}{2}$
m is even and n is even	$\frac{m+2 n-2}{2}$	$\frac{m+2 n}{2}$

Table 4
possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Then the maximum number of edges label with 1 is $n-1$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq n-1$. Thus $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq n-1$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq n+1-(n-1)=2>1$, a contradiction.
Case (ii): n is odd
First assign the label 1 to the vertex u. Now, we give the labels $2,3, \ldots, \frac{n+1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ and $-1,-2, \ldots, \frac{-n+1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Next assign the label $\frac{-n-1}{2}$ to the vertex v_{n}. Finally assign the label $\frac{n+1}{2}$ to the vertex v. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\overline{\mathbb{S}}_{\lambda_{1}^{c}}=n$.

Theorem 3.7. The graph $C_{m} \cup S_{n}$ is pair mean cordial for all $m, n \geq 4$.
Proof. Let us define $V\left(C_{m} \cup S_{n}\right)=\left\{u_{i}, v_{j}: 1 \leq i \leq m\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and $E\left(C_{m} \cup S_{n}\right)=\left\{u_{i} u_{i+1}, u_{m} u_{1}, v_{j} v_{j+1}, v_{n} v_{1}: 1 \leq i \leq m-1\right.$ and $1 \leq \mathrm{j} \leq$ $\mathrm{n}-1\} \cup\left\{\mathrm{v}_{1} \mathrm{v}_{\mathrm{j}+2}: 1 \leq \mathrm{j} \leq \mathrm{n}-3\right\}$. Hence the graph $C_{m} \cup S_{n}$ has $m+n$ vertices and $m+2 n-3$ edges. We have the following two cases arise:
Case (i): m is odd
There are two subcases that arise:
Subcase (i): n is odd
Take $\lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=-1, \lambda\left(u_{3}\right)=3$ and $\lambda\left(u_{4}\right)=-2$. Next, we give the labels $-3,-4, \ldots, \frac{-m+1}{2}$ respectively to the vertices $u_{5}, u_{7}, \ldots, u_{m-2}$ and $4,5, \ldots, \frac{m+1}{2}$ to the vertices $u_{6}, u_{8}, \ldots, u_{m-1}$ respectively. Then we assign the label 1 to the vertex u_{m}. More over, we assign the labels $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ and $\frac{-m-1}{2}, \frac{-m-3}{2}, \ldots, \frac{-m-n+2}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Finally we assign the label $\frac{-m-n}{2}$ to the vertex v_{n}.
Subcase (ii): n is even
In this case, we assign the labels to the vertices $u_{i}, 1 \leq i \leq m$ as in subcase (iii) of case (1). Next, we assign the labels $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n-1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-3}$ and $\frac{-m-1}{2}, \frac{-m-3}{2}, \ldots, \frac{-m-n+1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n}$ respectively. Furthermore, assign the label $\frac{m+n-1}{2}$ to the vertex v_{n-1}.
Case (ii): m is even
There are two subcases that arise:
Subcase (i): n is odd
Let us take $\lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=-1, \lambda\left(u_{3}\right)=3$ and $\lambda\left(u_{4}\right)=-2$. Next,
we give the labels $-3,-4, \ldots, \frac{-m}{2}$ respectively to the vertices $u_{5}, u_{7}, \ldots, u_{m-1}$ and $4,5, \ldots, \frac{m+2}{2}$ to the vertices $u_{6}, u_{8}, \ldots, u_{m}$ respectively. We assign the labels $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n-1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-4}$ and $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n+1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Also assign the label $\frac{m+n-1}{2}, 1$ to the vertices v_{n-2}, v_{n} respectively.

Subcase (ii): n is even

In this case, we assign the labels to the vertices $u_{i}, 1 \leq i \leq m$ as in subcase (i) of case (ii). Next, we assign the labels $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-3}$ and $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n}$ respectively. Now, we assign the label 1 to the vertex v_{n-1}.
The following table shows that this vertex labeling λ is a pair mean cordial of $C_{m} \cup S_{n}$ for all $m, n \geq 4$.

Nature of m and n	$\mathbb{S}_{\lambda_{1}}$	$\mathbb{S}_{\lambda_{c}}$
m is odd and n is odd	$\frac{m+2 n-3}{2}$	$\frac{m+2 n-3}{2}$
m is odd and n is even	$\frac{m+2 n-3}{2}$	$\frac{m+2 n-3}{2}$
m is even and n is odd	$\frac{m+2 n-4}{2}$	$\frac{m+2 n-2}{2}$
m is even and n is even	$\frac{m+2 n-4}{2}$	$\frac{m+2 n-2}{2}$

Table 5

Remark 3.2. The graph $C_{3} \cup S_{n}$ is pair mean cordial iff n is even.
Proof. If n is odd, suppose that $C_{3} \cup S_{n}$ is pair mean cordial. Now if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label with 1 is $n-1$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq n-1$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-(n-1)=n+1$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq n+1-(n-1)=2>1$, a contradiction.
Further if n is even, let us consider $\lambda\left(u_{1}\right)=1, \lambda\left(u_{2}\right)=1$ and $\lambda\left(u_{3}\right)=\frac{-m-n+1}{2}$. Then we give the labels $2,3, \ldots, \frac{m+n-1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and $-1,-2, \ldots, \frac{-m-n+3}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n}$ respectively. $\overline{\mathbb{S}}_{\lambda_{1}}=\overline{\mathbb{S}}_{\lambda_{1}^{c}}=$ n.

Theorem 3.8. The graph $C_{m} \cup C_{n}$ is pair mean cordial for all $m \geq 3$ and $n \geq 4$.
Proof. Let C_{m} be the cycle $u_{1} u_{2} \ldots u_{m} u_{1}$ and C_{n} be the cycle $v_{1} v_{2} \ldots v_{n} v_{1}$. Then the graph $C_{m} \cup C_{n}$ has $m+n$ vertices and $m+n$ edges. We have the following three cases arise:
Case (i): $m=3$
Let us consider $\lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=-1$ and $\lambda\left(u_{3}\right)=3$. There are two subcases that arise:
Subcase (i): n is odd
Let $\lambda\left(v_{1}\right)=-2, \lambda\left(v_{2}\right)=4$ and $\lambda\left(v_{3}\right)=-3$. Then we give the labels $-4,-5, \ldots$,
$\frac{-m-n}{2}$ respectively to the vertices $v_{4}, v_{6}, \ldots, v_{n-1}$ and $5,6, \ldots, \frac{m+n}{2}$ to the vertices $v_{5}, v_{7}, \ldots, v_{n-2}$ respectively. Finally assign the label 1 to the vertex v_{n}.
Subcase (ii): n is even
If $n=4$, define $\lambda\left(v_{1}\right)=-2, \lambda\left(v_{2}\right)=-3, \lambda\left(v_{3}\right)=1$ and $\lambda\left(v_{4}\right)=1$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}}=3$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=4$.
If $n>4$, Then we give the labels $-4,-5, \ldots, \frac{-m-n+1}{2}$ respectively to the vertices $v_{4}, v_{6}, \ldots, v_{n-2}$ and $5,6, \ldots, \frac{m+n-1}{2}$ to the vertices $v_{5}, v_{7}, \ldots, v_{n-3}$ respectively. Also assign the labels $1, \frac{-m-n+1}{2}$ to the vertices v_{n-1}, v_{n} respectively.
Case (ii): m is odd
Let us take $\lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=-1, \lambda\left(u_{3}\right)=3$ and $\lambda\left(u_{4}\right)=-2$. Then we give the labels $-3,-4, \ldots, \frac{-m+1}{2}$ respectively to the vertices $u_{5}, u_{7}, \ldots, u_{m-2}$ and $4,5, \ldots, \frac{m+1}{2}$ to the vertices $u_{6}, u_{8}, \ldots, u_{m-1}$ respectively. Next assign the label 1 to the vertex u_{m}. Then there are two subcases that arise:
Subcase (i): n is odd
In this case, we give the labels $\frac{-m-1}{2}, \frac{-m-3}{2}, \ldots, \frac{-m-n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n}$ and $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively.
Subcase (ii): n is even
Also we give the labels $\frac{-m-1}{2}, \frac{-m-3}{2}, \ldots, \frac{-m-n+1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n-1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-2}$ respectively. Thus assign the label $\frac{-m-n+1}{2}$ to the vertex v_{n}.
Case (iii): m is even
Let us take $\lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=-1, \lambda\left(u_{3}\right)=3$ and $\lambda\left(u_{4}\right)=-2$. Thus we give the labels $-3,-4, \ldots, \frac{-m}{2}$ respectively to the vertices $u_{5}, u_{7}, \ldots, u_{m-1}$ and $4,5, \ldots, \frac{m+2}{2}$ to the vertices $u_{6}, u_{8}, \ldots, u_{m}$ respectively. There are two subcases that arise:
Subcase (i): n is odd
Now, we give the labels $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n+1}{2}$ respectively to the a vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ and $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n-1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-3}$ respectively. Next we assign the labels $1, \frac{-m-n+1}{2}$ to the vertices v_{n-1}, v_{n} respectively.
Subcase (ii): n is even
In this case, we give the labels $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-2}$ respectively. Finally assign the label 1 to the vertex v_{n}.
The following table shows that this vertex labeling λ is a pair mean cordial of $C_{m} \cup C_{n}$ for all $m \geq 3$ and $n \geq 4$.

Nature of m and n	$\mathbb{S}_{\lambda_{1}}$	$\mathbb{S}_{\lambda_{1}^{c}}$
m is odd and n is odd	$\frac{m+n}{2}$	$\frac{m+n}{2}$
m is odd and n is even	$\frac{m+n-1}{2}$	$\frac{m+n+1}{2}$
m is even and n is odd	$\frac{m+n-1}{2}$	$\frac{m+n+1}{2}$
m is even and n is even	$\frac{m+n}{2}$	$\frac{m+n}{2}$

Table 6

Example 3.9. A pair mean cordial labeling of $C_{8} \cup C_{7}$ is shown in Figure 2.

FIGURE 2
Remark 3.3. $C_{3} \cup C_{3}$ is not a pair mean cordial graph.
Proof. Suppose that $C_{3} \cup C_{3}$ is pair mean cordial. Now if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label with 1 is 2 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq n-1$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-(2)=4$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 4-2=2>1$, a contradiction.

Theorem 3.10. The graph $W_{m} \cup C_{n}$ is pair mean cordial for all $m \geq 3$ and $n \geq 5$.
Proof. Let $V\left(W_{m} \cup C_{n}\right)=\left\{u, u_{i}, v_{j}: 1 \leq i \leq \operatorname{mand} 1 \leq j \leq n\right\}$ and $E\left(W_{m} \cup\right.$ $\left.C_{n}\right)=\left\{u u_{i}: 1 \leq i \leq \operatorname{mand} 1 \leq j \leq n\right\} \cup\left\{u_{i} u_{i+1}, u_{m} u_{1}, v_{j} v_{j+1}, v_{n} v_{1}: 1 \leq i \leq\right.$ $m-1$ and $1 \leq j \leq n-1\}$. Hence $W_{m} \cup C_{n}$ has $m+n+1$ vertices and $2 m+n$ edges. We have the following two cases arise:
Case (i): m is odd
Now, we give the labels $2,3, \ldots, \frac{m+3}{2}$ respectively to the vertices $u_{1}, u_{3}, \ldots, u_{m}$ and $-1,-2, \ldots, \frac{-m+1}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m-1}$ respectively. Next assign the label $\frac{-m-1}{2}$ to the vertex u. There are two subcases that arise:
Subcase (i): n is odd
Then we assign the labels $\frac{-m-3}{2}, \frac{-m-5}{2}, \ldots, \frac{-m-n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ and $\frac{m+5}{2}, \frac{m+7}{2}, \ldots, \frac{m+n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-3}$ respectively. Finally, assign the labels 1,1 to the vertices v_{n-1}, v_{n} respectively.
Subcase (ii): n is even

Then assign the labels $\frac{m+5}{2}, \frac{-m-3}{2}, \frac{m+7}{2}, \frac{-m-5}{2}$ respectively to the vertices v_{1}, v_{2}, v_{3}, v_{4}. Next, we assign the labels $\frac{-m-7}{2}, \frac{-m-9}{2}, \ldots, \frac{-m-n-1}{2}$ respectively to the vertices $v_{5}, v_{7}, \ldots, v_{n-1}$ and $\frac{m+9}{2}, \frac{m+11}{2}, \ldots, \frac{m+n+1}{2}$ to the vertices v_{6}, v_{8}, \ldots, v_{n-2} respectively. Finally, we assign the label 1 to the vertex v_{n}.
Case (ii): m is even
First, we give the labels $2,3, \ldots, \frac{m+2}{2}$ respectively to the vertices $u_{1}, u_{3}, \ldots, u_{m-1}$ and $-1,-2, \ldots, \frac{-m}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m}$ respectively. There are two subcases that arise:
Subcase (i): n is odd
Now assign the label $\frac{m+4}{2}$ to the vertex u. Then we assign the labels $\frac{-m-2}{2}, \frac{m+6}{2}$, $\frac{-m-4}{2}$ respectively to the vertices v_{1}, v_{2}, v_{3}. More over we assign the labels $\frac{-m-6}{2}, \frac{-m-8}{2}, \ldots, \frac{-m-n-1}{2}$ respectively to the vertices $v_{4}, v_{6}, \ldots, v_{n-1}$ and $\frac{m+8}{2}$, $\frac{m+10}{2}, \ldots, \frac{m+n+1}{2}$ to the vertices $v_{5}, v_{7}, \ldots, v_{n-2}$ respectively. Finally, assign the label 1 to the vertex v_{n}.
Subcase (ii): n is even
In this case, assign the label $\frac{m+2}{2}$ to the vertex u. Then we assign the labels $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-2}$ respectively. Hence assign the label 1 to the vertex v_{n}.
The following table shows that this vertex labeling λ is a pair mean cordial of $W_{m} \cup C_{n}$ for all $m \geq 3$ and $n \geq 5$.

Nature of m and n	$\bar{S}_{\lambda_{1}}$	$\bar{S}_{\lambda_{1}^{c}}$
m is odd and n is odd	$\frac{2 m+n-1}{2}$	$\frac{2 m+n+1}{2}$
m is odd and n is even	$\frac{2 m^{2}+n}{2}$	$\frac{2 m^{2}+n}{2}$
m is even and n is odd	$\frac{2 m+n-1}{2}$	$\frac{2 m+n+1}{2}$
m is even and n is even	$\frac{2 m^{+n}}{2}$	$\frac{2 m^{2}+n}{2}$

Table 7

Remark 3.4. The graph $W_{m} \cup C_{3}$ is pair mean cordial iff m is odd.
Proof. If m is odd, let us assign labels to the vertices as $u, u_{i}, v_{j}, 1 \leq i \leq m$ and $1 \leq j \leq 3$ in case (i) of subcase (i) of theorem 3.7. If m is even, assume $W_{m} \cup C_{3}$ is pair mean cordial. Now if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label with 1 is m. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq m$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-m=m+3$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq m+3-m=3>1$, a contradiction.

Remark 3.5. The graph $W_{m} \cup C_{4}$ is pair mean cordial iff m is even.
Proof. If m is even, assign labels to the vertices as $u, u_{i}, v_{j}, 1 \leq i \leq m$ and $1 \leq j \leq 4$ in case ($i i$) of subcase ($(i i)$ of theorem 3.7. If m is odd, suppose
$W_{m} \cup C_{4}$ is pair mean cordial. Now if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label with 1 is $m+1$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq m+1$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-(m+1)=m+3$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq m+3-(m+1)=2>1$, a contradiction.

Theorem 3.11. The graph $S_{m} \cup S_{n}$ is not a pair mean cordial graph for all $m, n \geq 4$.

Proof. Let us define $V\left(S_{m} \cup S_{n}\right)=\left\{u_{i}, v_{j}: 1 \leq i \leq m\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and $E\left(S_{m} \cup S_{n}\right)=\left\{u_{i} u_{i+1}, u_{m} u_{1}, v_{j} v_{j+1}, v_{n} v_{1}: 1 \leq i \leq m-1\right.$ and $1 \leq \mathrm{j} \leq$ $\mathrm{n}-1\} \cup\left\{\mathrm{u}_{1} \mathrm{u}_{\mathrm{i}+2}, \mathrm{v}_{1} \mathrm{v}_{\mathrm{j}+2}: 1 \leq \mathrm{i} \leq \mathrm{m}-3\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}-3\right\}$. Hence $S_{m} \cup S_{n}$ has $m+n$ vertices and $2 m+2 n-6$ edges. Suppose $S_{m} \cup S_{n}$ is pair mean cordial. Now if the edge $u v$ get the label 1, the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label with 1 is $m+n-4$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq m+n-4$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-(m+n-4)=m+n-2$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq m+n-2-(m+n-4)=2>1$, a contradiction.

Theorem 3.12. The graph $S_{m} \cup W_{n}$ is pair mean cordial for all $m \geq 4$ and $n \geq 3$ except for $m+n$ is odd.

Proof. Let $V\left(S_{m} \cup W_{n}\right)=\left\{u_{i}, v, v_{j}: 1 \leq i \leq m\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and $E\left(S_{m} \cup W_{n}\right)=\left\{v v_{j}: 1 \leq j \leq n\right\} \cup\left\{u_{i} u_{i+1}, u_{m} u_{1}, v_{j} v_{j+1}, v_{n} v_{1}: 1 \leq i \leq\right.$ $m-1$ and $1 \leq j \leq n-1\} \cup\left\{v_{1} v_{j+2}: 1 \leq j \leq n-3\right\}$. Hence $S_{m} \cup W_{n}$ has $m+n+1$ vertices and $2 m+2 n-3$ edges. We have the following two cases arise: Case (i): $m+n$ is odd
Suppose that $S_{m} \cup W_{n}$ is pair mean cordial. Now if the edge $u v$ get the label 1, the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label with 1 is $m+n-3$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq m+n-3$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq m+n$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq m+n-(m+n-3)=3>1$, a contradiction.
Case (ii): $m+n$ is even
There are two subcases that arise:
Subcase (i): m and n is even
In this case, we give the labels $2,3, \ldots, \frac{m+2}{2}$ respectively to the vertices u_{1}, u_{3}, \ldots, u_{m-1} and $-1,-2, \ldots, \frac{-m+2}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m-2}$ respectively. More over assign the label 1 to the vertex u_{m}. Next we give the labels $\frac{-m}{2}, \frac{-m-2}{2}, \ldots$, $\frac{-m-n+2}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-2}$ respectively. Furthermore assign the label $\frac{-m-n}{2}$ to the vertex v_{n}. Finally, assign the label $\frac{m+n}{2}$ to the vertex v.
Subcase (ii): m and n is odd
First give the labels $2,3, \ldots, \frac{m+1}{2}$ respectively to the vertices $u_{1}, u_{3}, \ldots, u_{m-2}$ and $-1,-2, \ldots, \frac{-m+3}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m-3}$ respectively. More over assign the labels $\frac{-m-n}{2}, 1$ to the vertices $u_{m-1} u_{m}$ respectively. Next we give the labels $\frac{-m+1}{2}, \frac{-m-1}{2}, \ldots, \frac{-m-n+2}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n}$ and $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n-2}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Furthermore
assign the label $\frac{m+n}{2}$ to the vertex v. In both cases, $\overline{\mathbb{S}}_{\lambda_{1}}=m+n-2$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=m+n-1$.

Example 3.13. A pair mean cordial labeling of $S_{9} \cup W_{9}$ is shown in Figure 3.

FIGURE 3
Theorem 3.14. The graph $W_{m} \cup W_{n}$ is not a pair mean cordial graph for all $m, n \geq 3$.

Proof. Let $V\left(W_{m} \cup W_{n}\right)=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq m\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and $E\left(W_{m} \cup\right.$ $\left.W_{n}\right)=\left\{u u_{i}, u_{m} u_{1}, v v_{j}, v_{n} v_{1}: 1 \leq i \leq m\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}+1}: 1 \leq\right.$ $\mathrm{i} \leq \mathrm{m}-1$ and $1 \leq \mathrm{j} \leq \mathrm{n}-1\}$. Hence $W_{m} \cup W_{n}$ has $m+n+2$ vertices and $2 m+2 n$ edges. We have the following two cases arise:
Case (i): $m+n$ is odd
Suppose $W_{m} \cup W_{n}$ is pair mean cordial. Now if the edge $u v$ get the label 1, the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label with 1 is $m+n-1$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq m+n-1$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq$ $q-(m+n-1)=m+n-1$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq m+n-1-(m+n-1)=2>1$, a contradiction.
Case (ii): $m+n$ is even
Assume that $W_{m} \cup W_{n}$ is pair mean cordial. Now if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label with 1 is $m+n-2$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq m+n-2$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq$ $q-(m+n-2)=m+n+2$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq m+n+2-(m+n-2)=4>1$, a contradiction.

4. Discussion

Since its initial proposal in 1987 by Cahit[3], cordial labeling is now a popular field of research in graph labeling. Many authors examined the different kinds of cordial labeling in [1,2,4,5,8-13,19-23]. The concept of mean labeling was introduced in [24], while the pair difference cordial labeling was first proposed in [13]. Our introduction of the pair mean cordial labeling in [14] was motivated by these two concepts. The current paper presents the results of the pair mean cordial labeling behavior of union of few graphs, which include $P_{m} \cup P_{n}, P_{m} \cup C_{n}$, $P_{m} \cup S_{n}, P_{m} \cup W_{n}, C_{m} \cup C_{n}, C_{m} \cup S_{n}, W_{m} \cup W_{n}, W_{m} \cup C_{n}, S_{m} \cup S_{n}$ and $S_{m} \cup W_{n}$.

5. Limitation of Research

Investigating the pair mean cordial labeling behavior of the scorpion graph, spider graph, generalized Peterson graph, generalized Heawood graph, cubic diamond k-chain graph, swastik graph, broken wheel graph and n-cube graph on a large number of vertices is currently challenging to study.

6. Future Research

Future research to examine the pair mean cordial labeling behavior of union of path with other graphs like bull graph, shackle graph, jahangir graph, olive graph, coconut graph, step ladder and shadow graph.

7. Conclusion

In this paper, we have investigated the pair mean cordial labeling behavior of some union of graphs such as $P_{m} \cup P_{n}, P_{m} \cup C_{n}, P_{m} \cup S_{n}, P_{m} \cup W_{n}, C_{m} \cup$ $C_{n}, C_{m} \cup S_{n}, W_{m} \cup W_{n}, W_{m} \cup C_{n}, S_{m} \cup S_{n}$ and $S_{m} \cup W_{n}$. Future research should focus on examining the pair mean cordial labeling behavior of many graphs including generalized web graph, banana tree, x-tree, coconut tree, windmill graph, lollipop graph, broom graph and polar grid graph.

Conflicts of interest : Conflicts of interest are not disclosed by the authors.
Data availability : Not applicable
Acknowledgments : The Referee provided valuable suggestions that helped the authors enhance their paper, which they gratefully thank.

References

1. M. Bapat, Product cordial labeling of some fusion graphs, Internat. J. Math. Trends and Tech. 50 (2017), 125-129.
2. C.M. Barasara, Edge and total edge product cordial labeling of some new graphs, Internat. Engin. Sci. Math. 7 (2018), 263-273.
3. I. Cahit, Cordial graphs: a weaker versionof graceful and harmonious graphs, Ars comb. 23 (1987), 201-207.
4. I. Cahit, Recent results and open problems on cordial graphs, Contemporary Methods in Graph Theory, R. Bodendiek(ed.), Wissenschaftsverlag Mannheim, 1990, 209-230.
5. U. Deshmukh and V.Y. Shaikh, Mean cordial labeling of some star related graphs, Internat. J. Math. Combin. 3 (2016), 146-157.
6. J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 24 (2021).
7. F. Harary, Graph theory, Addison Wesely, Reading Mass., 1972.
8. W.W. Kirchherr, On the cordiality of some specific graphs, Ars Combin. 31 (1991), 127138.
9. D. Kuo, G. Chang, and Y.H. Kwong, Cordial labeling of $m K_{n}$, Discrete Math. 169 (1997), 121-131.
10. P. Lawrence Rozario Raj and R. Lawrence Joseph Manoharan, Divisor ordial labeling of some disconnected graphs, Internat. J. Math. Trends and Tech. 15 (2014), 49-63.
11. R. Patrias and O. Pechenik, Path-cordial abelian groups, Australas. J. Combin. 80 (2021), 157-166.
12. U. Prajapati and A.V. Vacntiya, SD-Prime cordial labeling of alternate k-polygonal snake of various types, Proyecciones 40 (2021), 619-634.
13. R. Ponraj, A. Gayathri and S. Somasundaram, Pair difference cordial labeling of graphs, J. Math. Compt. Sci. 11 (2021), 2551-2567.
14. R. Ponraj and S. Prabhu, Pair mean cordial labeling of graphs, Journal of Algorithms and Computation 54 (2022), 1-10.
15. R. Ponraj and S. Prabhu, Pair Mean Cordial labeling of some corona graphs, Journal of Indian Acad. Math. 44 (2022), 45-54.
16. R. Ponraj and S. Prabhu, Pair mean cordiality of some snake graphs, Global Journal of Pure and Applied Mathematics 18 (2022), 283-295.
17. R. Ponraj and S. Prabhu, Pair mean cordial labeling of graphs obtained from path and cycle, J. Appl. \& Pure Math. 4 (2022), 85-97.
18. R. Ponraj and S. Prabhu, On pair mean cordial graphs, Journal of Applied and Pure Mathematics 5 (2023), 237-253.
19. M.A. Seoud and H.F. Helmi, On product cordial graphs, Ars Combin. 101 (2011), 519-529.
20. M.A. Seoud and M. Aboshady, Further results on pairity combination cordial labeling, J. Egyptian Math. Soc. 28 (2020), 10 pp.
21. M.A. Seoud and A.E.I. Abdel Maqsoud, On cordial and balanced labeling of graphs, J. Egyptian Math. Soe. 7 (1999), 127-135.
22. M.A. Seoud and H. Jaber, Prime cordial and 3-equitable prime cordial graphs, Util. Math. 111 (2019), 95-125.
23. M.A. Seoud and M.A. Salim, Two upper bounds of prime cordial graphs, JCMCC 75 (2010), 95-103.
24. S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy Science Letter 26 (2003), 210-213.
R. Ponraj did his Ph.D in Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India. He has guided 11 Ph. D. scholars and published around 180 research papers in reputed journals. He is an author of eight books for undergraduate students. His research interest in Graph Theory. He is currently an Associate Professor at Sri Paramakalyani College, Alwarkurichi, Tamilnadu, India.
Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India.
e-mail: ponrajmaths@gmail.com
S. Prabhu did his M.Sc degree in Sri Kaliswari College, Sivakasi and M.Phil degree at Madurai Kamaraj University, Madurai, Tamilnadu, India. His research interest is in Graph Theory. He has published 5 research papers in reputed journals.
Research Scholar, Register number: 21121232091003, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India (Affiliated to Manonmaniam Sundaranar University, Abhishekapatti, Tirunelveli-627 012, Tamilnadu, India).
e-mail: selvaprabhu12@gmail.com

[^0]: Received November 15, 2023. Revised January 10, 2024. Accepted February 20, 2024.

 * Corresponding author.
 (C) 2024 KSCAM .

