• Title/Summary/Keyword: weakly Abelian

Search Result 15, Processing Time 0.022 seconds

ON WEAKLY LOCAL RINGS

  • Piao, Zhelin;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.28 no.1
    • /
    • pp.65-73
    • /
    • 2020
  • This article concerns a property of local rings and domains. A ring R is called weakly local if for every a ∈ R, a is regular or 1-a is regular, where a regular element means a non-zero-divisor. We study the structure of weakly local rings in relation to several kinds of factor rings and ring extensions that play roles in ring theory. We prove that the characteristic of a weakly local ring is either zero or a power of a prime number. It is also shown that the weakly local property can go up to polynomial (power series) rings and a kind of Abelian matrix rings.

AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES

  • Gholamreza Pirmohammadi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.273-280
    • /
    • 2024
  • Let I be an ideal of a commutative Noetherian semi-local ring R and M be an R-module. It is shown that if dim M ≤ 2 and SuppR M ⊆ V (I), then M is I-weakly cofinite if (and only if) the R-modules HomR(R/I, M) and Ext1R(R/I, M) are weakly Laskerian. As a consequence of this result, it is shown that the category of all I-weakly cofinite modules X with dim X ≤ 2, forms an Abelian subcategory of the category of all R-modules. Finally, it is shown that if dim R/I ≤ 2, then for each pair of finitely generated R-modules M and N and each pair of the integers i, j ≥ 0, the R-modules TorRi(N, HjI(M)) and ExtiR(N, HjI(M)) are I-weakly cofinite.

Simple Presentness in Modular Group Algebras over Highly-generated Rings

  • Danchev, Peter V.
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.57-64
    • /
    • 2006
  • It is proved that if G is a direct sum of countable abelian $p$-groups and R is a special selected commutative unitary highly-generated ring of prime characteristic $p$, which ring is more general than the weakly perfect one, then the group of all normed units V (RG) modulo G, that is V (RG)=G, is a direct sum of countable groups as well. This strengthens a result due to W. May, published in (Proc. Amer. Math. Soc., 1979), that treats the same question but over a perfect ring.

  • PDF

NILPOTENT-DUO PROPERTY ON POWERS

  • Kim, Dong Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1103-1112
    • /
    • 2018
  • We study the structure of a generalization of right nilpotent-duo rings in relation with powers of elements. Such a ring property is said to be weakly right nilpotent-duo. We find connections between weakly right nilpotent-duo and weakly right duo rings, in several algebraic situations which have roles in ring theory. We also observe properties of weakly right nilpotent-duo rings in relation with their subrings and extensions.

STRUCTURES CONCERNING GROUP OF UNITS

  • Chung, Young Woo;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.177-191
    • /
    • 2017
  • In this note we consider the right unit-duo ring property on the powers of elements, and introduce the concept of weakly right unit-duo ring. We investigate first the properties of weakly right unit-duo rings which are useful to the study of related studies. We observe next various kinds of relations and examples of weakly right unit-duo rings which do roles in ring theory.

ON A GENERALIZATION OF RIGHT DUO RINGS

  • Kim, Nam Kyun;Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.925-942
    • /
    • 2016
  • We study the structure of rings whose principal right ideals contain a sort of two-sided ideals, introducing right ${\pi}$-duo as a generalization of (weakly) right duo rings. Abelian ${\pi}$-regular rings are ${\pi}$-duo, which is compared with the fact that Abelian regular rings are duo. For a right ${\pi}$-duo ring R, it is shown that every prime ideal of R is maximal if and only if R is a (strongly) ${\pi}$-regular ring with $J(R)=N_*(R)$. This result may be helpful to develop several well-known results related to pm rings (i.e., rings whose prime ideals are maximal). We also extend the right ${\pi}$-duo property to several kinds of ring which have roles in ring theory.

Weakly np-Injective Rings and Weakly C2 Rings

  • Wei, Junchao;Che, Jianhua
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.93-108
    • /
    • 2011
  • A ring R is called left weakly np- injective if for each non-nilpotent element a of R, there exists a positive integer n such that any left R- homomorphism from $Ra^n$ to R is right multiplication by an element of R. In this paper various properties of these rings are first developed, many extending known results such as every left or right module over a left weakly np- injective ring is divisible; R is left seft-injective if and only if R is left weakly np-injective and $_RR$ is weakly injective; R is strongly regular if and only if R is abelian left pp and left weakly np- injective. We next introduce the concepts of left weakly pp rings and left weakly C2 rings. In terms of these rings, we give some characterizations of (von Neumann) regular rings such as R is regular if and only if R is n- regular, left weakly pp and left weakly C2. Finally, the relations among left C2 rings, left weakly C2 rings and left GC2 rings are given.

Weakly Semicommutative Rings and Strongly Regular Rings

  • Wang, Long;Wei, Junchao
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.65-72
    • /
    • 2014
  • A ring R is called weakly semicommutative ring if for any a, $b{\in}R^*$ = R\{0} with ab = 0, there exists $n{\geq}1$ such that either an $a^n{\neq}0$ and $a^nRb=0$ or $b^n{\neq}0$ and $aRb^n=0$. In this paper, many properties of weakly semicommutative rings are introduced, some known results are extended. Especially, we show that a ring R is a strongly regular ring if and only if R is a left SF-ring and weakly semicommutative ring.

WEAKLY DUO RINGS WITH NIL JACOBSON RADICAL

  • KIM HONG KEE;KIM NAM KYUN;LEE YANG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.457-470
    • /
    • 2005
  • Yu showed that every right (left) primitive factor ring of weakly right (left) duo rings is a division ring. It is not difficult to show that each weakly right (left) duo ring is abelian and has the classical right (left) quotient ring. In this note we first provide a left duo ring (but not weakly right duo) in spite of it being left Noetherian and local. Thus we observe conditions under which weakly one-sided duo rings may be two-sided. We prove that a weakly one-sided duo ring R is weakly duo under each of the following conditions: (1) R is semilocal with nil Jacobson radical; (2) R is locally finite. Based on the preceding case (1) we study a kind of composition length of a right or left Artinian weakly duo ring R, obtaining that i(R) is finite and $\alpha^{i(R)}R\;=\;R\alpha^{i(R)\;=\;R\alpha^{i(R)}R\;for\;all\;\alpha\;{\in}\;R$, where i(R) is the index (of nilpotency) of R. Note that one-sided Artinian rings and locally finite rings are strongly $\pi-regular$. Thus we also observe connections between strongly $\pi-regular$ weakly right duo rings and related rings, constructing available examples.

SOME ABELIAN MCCOY RINGS

  • Rasul Mohammadi;Ahmad Moussavi;Masoome Zahiri
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1233-1254
    • /
    • 2023
  • We introduce two subclasses of abelian McCoy rings, so-called π-CN-rings and π-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as 2-primal rings, bounded rings etc. It is shown that a ring R is π-CN whenever every nilpotent element of index 2 in R is central. These rings naturally generalize the long-known class of CN-rings, introduced by Drazin [9]. It is proved that π-CN-rings are abelian, McCoy and 2-primal. We also show that, π-duo rings are strongly McCoy and abelian and also they are strongly right AB. If R is π-duo, then R[x] has property (A). If R is π-duo and it is either right weakly continuous or every prime ideal of R is maximal, then R has property (A). A π-duo ring R is left perfect if and only if R contains no infinite set of orthogonal idempotents and every left R-module has a maximal submodule. Our achieved results substantially improve many existing results.