• Title/Summary/Keyword: weak regularity

Search Result 45, Processing Time 0.021 seconds

Regularity of a Particular Subsemigroup of the Semigroup of Transformations Preserving an Equivalence

  • Rakbud, Jittisak
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.627-635
    • /
    • 2018
  • In this paper, we use the notion of characters of transformations provided in [8] by Purisang and Rakbud to define a notion of weak regularity of transformations on an arbitrarily fixed set X. The regularity of a semigroup of weakly regular transformations on a set X is also investigated.

LOCAL REGULARITY OF THE STEADY STATE NAVIER-STOKES EQUATIONS NEAR BOUNDARY IN FIVE DIMENSIONS

  • Kim, Jaewoo;Kim, Myeonghyeon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.557-569
    • /
    • 2009
  • We present a new regularity criterion for suitable weak solutions of the steady-state Navier-Stokes equations near boundary in dimension five. We show that suitable weak solutions are regular up to the boundary if the scaled $L^{\frac{5}{2}}$-norm of the solution is small near the boundary. Our result is also valid in the interior.

  • PDF

REGULARITY AND SINGULARITY OF WEAK SOLUTIONS TO OSTWALD-DE WAELE FLOWS

  • Bae, Hyeong-Ohk;Choe, Hi-Jun;Kim, Do-Wan
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.957-975
    • /
    • 2000
  • We find a regularity criterion for the Ostwald-de Waele models like Serrin's condition to the Navier-Stokes equations. Moreover, we show short time existence and estimate the Hausdorff dimension of the set of singular times for the weak solutions.

  • PDF

Regularity for Very Weak Solutions of A-Harmonic Equation with Weight

  • Gao, Hong-Ya;Zhang, Yu;Chu, Yu-Ming
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.2
    • /
    • pp.195-202
    • /
    • 2009
  • This paper deals with very weak solutions of the A-harmonic equation $divA(x,{\nabla}u)$ = 0 (*) with the operator $A:{\Omega}{\times}R^n{\rightarrow}R^n$ satisfies some coercivity and controllable growth conditions with Muckenhoupt weight. By using the Hodge decomposition with weight, a regularity property is proved: There exists an integrable exponent $r_1=r_1({\lambda},n,p)$ < p, such that every very weak solution $u{\in}W_{loc}^{1,r}({\Omega},{\omega})$ with $r_1$ < r < p belongs to $W_{loc}^{1,p}({\Omega},{\omega})$. That is, u is a weak solution to (*) in the usual sense.

LOCAL REGULARITY CRITERIA OF THE NAVIER-STOKES EQUATIONS WITH SLIP BOUNDARY CONDITIONS

  • Bae, Hyeong-Ohk;Kang, Kyungkeun;Kim, Myeonghyeon
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.597-621
    • /
    • 2016
  • We present regularity conditions for suitable weak solutions of the Navier-Stokes equations with slip boundary data near the curved boundary. To be more precise, we prove that suitable weak solutions become regular in a neighborhood boundary points, provided the scaled mixed norm $L^{p,q}_{x,t}$ with 3/p + 2/q = 2, $1{\leq}q$ < ${\infty}$ is sufficiently small in the neighborhood.

Left Regular and Left Weakly Regular n-ary Semigroups

  • Pornsurat, Patchara;Pibaljommee, Bundit
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.29-41
    • /
    • 2022
  • We study the concept of a quasi-ideal and a generalized bi-ideal of an n-ary semigroup; give a construction of the quasi-ideal of an n-ary semigroup generated by its nonempty subset; and introduce the notions of regularities, namely, a left regularity and a left weakly regularity. Moreover, the notions of a right regularity, a right weak regularity and a complete regularity are given. Finally, characterizations of these regularities are presented.

ON REGULARITY OF SOLUTIONS OF THE DIRICHLET PROBLEM FOR THE POLYHARMONIC OPERATOR

  • Kozlov, Vladimir
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.871-884
    • /
    • 2000
  • Polyharmonic operator with Dirichlet boundary condition is considered in a n-dimensional cone. The regularity properties of weak solutions are studied. In particular, it is proved the Holder contionuity of solutions near the vertex of the cone for dimensions n=2m+3,2m+4, where 2m is the order of the polyharmonic operator.

  • PDF