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REGULARITY CRITERION ON WEAK SOLUTIONS TO THE
NAVIER-STOKES EQUATIONS

SADEK GALA

ABSTRACT. Consider a weak solution u of the Navier-Stokes equations in
the class L2 ((O, T); X, (Rd)d). We establish a new approach to treat the
regularity problem for the Navier-Stokes equation in term of the multiplier
space X1 (R4).

1. Introduction

Consider the Navier-Stokes equations in (0,7) x R¢ with 0 < T < co and
d>3:

Gu+ (uV)u—Au+Vp = 0, (z,t) € R? x (0,00),
(1.1) Vau = 0, (z,t) € R? x (0,00),
w(z,0) = alx), xR,

where u = u(z,t) is the velocity field, p = p(z,t) is the scalar pressure and
a(z) with div @ = 0 in the sense of distribution is the initial velocity field.
For simplicity, we assume that the external force has a scalar potential and is
included into the pressure gradient.

In their famous paper, Leray [12] and Hopf [6] constructed a weak solution
u of (1.1) for arbitrary a € L2. The solution is called the Leray-Hopf weak
solution. In the general case the problem on uniqueness and regularity of
Leray-Hopf’ s weak solutions are still open question. Masuda [14] extended
Serrin’ s class for uniqueness of weak solutions and made it clear that the class
L* ((0,T); L? (R*)) plays an important role for uniqueness of weak solutions.
Kozono-Sohr [8] showed that the uniqueness holds in L* ((0,T); L?).

Foias [4] and Serrin [16] introduced the class L* ((0, 00); L?) and showed that
under the additional assumption

2 d .
u € L¥((0,00); L) for — 4+ — =1 with ¢>d,
&4 q
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u is the only weak solution.
The purpose of this paper is to improve the criterion on regularity of weak

solutions to in the class L? ((O,T);X 1 (]Rd)d). We know that for every a €

L2 (R%), there is at least one weak solution u of (1.1) satisfying the energy
inequality :

t
lu(t)l[z= + 2/ IVu(r)IIz2 dr < llallz: -
0

This is the solution obtained by Leray [12] in the class L™ ((0,T);L2) N
1

L2 ((0, T);H

ural regularity obtained from the above energy inequality is that

and satisfying (1.1) in the sense of distributions. The nat-

[

2 d 2d
& - L1 d — - = i —_—
w e L*((0,T); L (R?)) for a+q 2 with 2§q§d_2

If Leray’ s weak solution u satisfies the following
we L*((0,T); L (R?))  for —z— + g =1 with ¢>d,

then u is regular on (0,T]. For more facts concerning regularity of weak solu-
tions, we refer to a celebrated paper of Kozono-Sohr [8].

1.1. BMO and Hardy space H!(R?)
We recall that a locally summable function g on R is said to have bounded
mean oscillation if

9l a0 = Sup—=ro / 199) — 95010 | dy < oo,
KBRS ’

where

9B(z,R) = I—B—(xla—Rﬂ / g(y)dy.
B(x,R)
The class of functions of bounded mean oscillation is denoted by BMO and
often is refereed as John-Nirenberg space.
Note that
lgllgaro =0 if and only if g = const.

It is thus natural to consider the quotient space BMO/R with the norm
induced by ||.||gpy0- Then BMO/R is a Banach space, which will also be
denoted BM O for simplicity. We easily see that L>° C BMO with continuous
injection. For f(z) = log|z|, we have f € BMO but f ¢ L*>, so BMO is
strictly larger than L*°.

Next, we recall the definition and some of the main properties of Hardy
spaces HP(R?) introduced by E. Stein and G. Weiss [18] (for more facts on
these spaces see C. Fefferman and E. Stein [5]).
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Definition 1 ([5]). Let 0 < p < oo, and let ¢ € S(R?) satisfy /cpdx =1 A

Rn
tempered distribution f belongs to the Hardy space HP(R?) if

(1.2) f™(2) = supl(pe = f) ()] € LP(RY),
where ¢, (x) =t~ (t71z).

It is known that if f € HP(R?), then (1.2) holds for all p € S(R?) satisfying
/ wdz = 1. The (quasi)-norm of HP(R?) is defined, up to equivalence, by
Rd

P

1 gy = 157 (@) o sy = ( / If*(:v)l”d:v)
Rd

We known by ([5], [17]) that if 1 < p < oo, then HP is a Banach space :
HP(RY) = LP(RY) for 1<p< oo,
H'(RY) < LYR?) with continuous injection,

and that HP(R?), 0 < p < 1, are quasi-Banach spaces in the quasi-norm
o -

The crucial fact for our purpose is the boundedness of the Riesz transforms
R; on all of the spaces HP. Furthermore, an L!-function f on R¢ belongs to
H'(R?) if and only if its Riesz transforms R, f all belong to L*(R?) and

d
W1l ey = 1Nl ray + Z ||ij||L1(Rd) (equivalent norms).
7=1

Notice that all function f € H'(R?) satisfy

(1.3) / f(@)dz = 0.
Rd

Indeed, the assumption f € H!(R?) implies that the Fourier transforms

. N T
fio = [ 1ot and B = @FO. G=1...0),
are all continuous on R?, so f(O) =0, and (1.3) is proved.
A fundamental theorem in the theory of Hardy spaces H!(R?) developed by
C. Fefferman and E. Stein [5] asserts

Theorem 1 (Fefferman). The dual space of H'(R?) is BMO. More precisely,
L is a continuous linear functional on H*(R?) if and only if it can be represented
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as

= [ 1o
),

for some function g in BMO, moreover for any g € BMO and any f € H'(R?)
we have

(1.4) / fodz| < c(d) || flla 9l smo -
Rd

Let v > 1. We define the maximal function of f depending on v,

1

5

M, §(z) = sup Eﬁ / F) dy

t>0
By(z)

We begin by establishing the following result which is a variant of the Hardy-
Littlewood maximal theorem. We need

Lemma 1. If v < p < o0, then
M, : L? (R?) » L? (R?) s bounded.

See [17] for the proof.

In [2], Coifman, Lions, Meyer, and Semmes, it was shown that the Hardy
spaces can be used to analyze the regularity of the various nonlinear quantities
by the compensated compactness theory due to L. Murat [13] and F. Tartar
[15]. Since then, theses spaces play an important role in studing the regularity
of solutions to partial differential equations. In particular, it was shown that
for exponents p,q with 1 < p < oo, % + 3 =1, and vector fields u € LP(RH)

v € LYR?)? with div u = 0, curl v = 0 in the sense of distributions, the
scalar product u.v belongs to the Hardy space H!(R?). Moreover, there exists
a positive constant C' such that

“u‘UH’Hl(Rd) < Cllullgs [0l g -

The main purpose of this subsection is to prove two facts about div-curl
lemma without assuming any a priori assumptions on exact cancelation, name-
ly the divergence and curl need not be zero, and which lead to div (uv) being
in the Hardy space #!(R?).

The proof will be divided into two parts. In part 1, we consider the case u
and v are supported on the ball |z| < Ry where Ry > 1 is a positive constant
to be determined later, while in part 2, the general case follows by partition of
unity. In order to simplify the presentation, we take p = ¢ = 2.

The Sobolev space H} (R?), 1 < p < oo, consists of functions f € L? (R?)
such that |V f| € L? (R?). It is a Banach space with respect to the norm

Uiy = 1o + 1V £l
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Specifically, we will prove

Theorem 2. Let u € H} (R*)? and v € H} (RY), p > 1, L+ 1 = 1. Then
there exists a positive constant C(d) such that
(L.5) div (wo)ll 31y < C (lull o IVl Lo + [1div ull g flvllze) -

Remark 1. Such inequalities and their generalizations are useful in hydrody-
namics. Reader is refereed, in particular to [2], [3].

Theorem 2 is a generalized version of the “div-curl” lemma ([2], Theorem
I1.1). Observe that when div u = 0, Theorem 2 reduces to the classical div-curl
lemma [2].

The following result due to [2], shows the importance of the Hardy space
theory in estimating the non-linear term w.Vv attached to the Navier-Stokes
equations and this produces a useful tool for PDE.

Lemma 2. Let1<p<oo,1<q<dand%:%+%<§+1.Ifu6Lp(Rd)d
with V.u =0 and Vv € L7 (R?). Then

uw.Vv e H (R,
and

-Vl gy < Cllull s [Vl o -

Proof. The result is due to [2]; but we give it here a detailed proof for the
reader’ s convenience. Observe that

f=uVo=V.(u® (v—-c¢)

for an arbitrary constant vector ¢. So we get

(0% ) (@) = =41 / (V) (74 — ) uly) W(y) — ms()) dy,

B (=)
where
@/
mp(v) = v(y)dy
“) = 5@
By (x)
Taking
1<y< 1< pg<d ith 1+1 1+1
o0, , Wi - e R
! v "B d

and writing
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we see by Poincaré-Sobolev inequality that

2=

A

1
B*

D@ < g | [ wordar| | [ ) -mae)” a

By () B:(x)

=

IA

c
ar| [ mwra| | [ vewray
By () By (z)

1
p

W=

- 1 y 1 ,
= ¢ |Be ()| /)|u(y)| dy 1B, ()] / [Vu(y)|” dy

B, (x
< C(Myu)(z). (Mp(Vv)) (2).
We thus obtain
sup (@ % f) ()] < C (Myu) (z). (Mp(V0)) ().

Bt (CE)

Since we can take v and § so that
l<vy<p, 1<pB<qg<d,

it follows from Lemma 1 that

IMyullpy < Cllulls s [1Ma (VO)llpe < ClIVYllL, -

Lemma 2 now follows from Hoélder’ s inequality :

1 1
ol <Ml s (0<p<oc0<g<oot =1y

This finishes the proof of the lemma.
We are now in a position to proof Theorem 2.

Proof. To prove this, we distinguish three cases.
Case A. Let us assume first that

V. =0.
In this case we get

div (vu) = (Vo) u + vdivu = u.Vo.

)

Then we have u € LP(R?)4, Vv € LY(R?) with div u = 0, curl (Vo) = 0 in the

sense of distributions. It follows from Lemma 2 that
u.Vv € H(R?)
and there exists an absolute constant C' such that

||diV (UU)H’Hl(Rd) S C “U“Lp ”VU“LQ .



REGULARITY CRITERION ON WEAK SOLUTIONS 543

Case B. We may of course suppose under additional assumptions that u
and v are supported on the ball || < Ry. In order to simplify the presentation,
we take p = ¢ = 2. We shall write Q for the ball in R? of radius Ry centered
at the origin. By Hg (£2) we denote the closed subspace of H' (Q) which is the
closure of C§° () in the H! norm. Let

g =divu € L*(R%).
By the classical result (see e.g. [20]) we know that

g =011 + -+ 0agud,
where g1,...,gq belong to H} (Q). Setting
G=(g1,-..,94) and r=u-G.
Then it follows that
divr =0 and re L*().
Using Lemma 2 we infer
div (rv) € HY(R?).
Further we set
f =div(Gv).
For this purpose we use Lemma 3 below, it follows that f € H'(R?).
Case C. The general case. We call ¢ a smooth bump function with compact

support such that
1=Y" @*z—k).

kezd
We have thus, if f and g are two functions,

fz)g() Y f@et(z - k)gla)

keZd

= Y fl@a(a),

keZd

where

fu(@) =o(z - k)f(z) and gi(z) = p(z - k)g().
Now set

up(z) = p(z — k)u(z) and wvi(z) = p(z — k)v(z)
for k € Z4. We then have

div (wv) = Z (ugve) = Z wik, wy = div (urvy) .

keZd kezd

We are going to check that

Z HwkH’Hl(Rd) < 0.
keZd
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To do this, we apply the local version (Case A) and it follows
llwillymay < C(llukllpe + lldivuellz2) (loell 2 + [1divvell2)
= el (Zd) )
Up to now we have proved
(1.6) 1div (uo)llz mey < C (lullpe + lidivullg2) (lvll L2 + lldivoll.) -
This automatically yields the estimate
(L.7) ldiv (uv)llg1 ey < C (llull g2 1Vl L2 + ol g2 [1div ull2) -
To see this, we may replace u in the inequality above by

u=d(3-8)y (%), whenever 0 < 4§ < o0.

and similarly v by

vs = 5(%‘%)0 (E) , whenever 0 < 6§ < .

Thus the left-hand side of (1.6) fortunately does not change, while at right-
hand we get rid the undesirable terms by letting § either to 0, or to +o0o. This
completes the proof. O

Now we turn to the proof of Lemma 3. One can show that every function
f € LP(R?), p € (1,+00], with compact support and / fdz = 0 belongs to
H(R?). In particular,
Lemma 3. Ifd* = ;%4 fe L, supp f C O and

/fdx =0,

then f € H'(R?).

Proof. We have
f=div(Gyv+ G Vv

and we have to prove that the two terms belong to L. We consider the first
term on the right. Since Vv € L2, we have

1
-

N =

div(G) € L? and v € L9, where

| =

Thus,
vdiv(G) € L.

A similar argument works in the second term and this completes the proof of
the lemma. O
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1.2. Multipliers and Morrey-Campanato spaces

In this section, we give a description of the multiplier space X, introduced
recently by P. G. Lemarié-Rieusset in his work [10] (see also [11]). The space
X, of pointwise multipliers which map L? into H " is defined in the following
way

Definition 2. For 0 <r < %, we define the homogeneous space X » by

Xr:{fGL?OC: VgEHT ngLZ},

s

where we denote by H (R?) the completion of the space D (R?) with respect
to the norm [[ul| ;- = ”(—A)% u‘

L2’
The norm of X, is given by the operator norm of pointwise multiplication

HfHXr = | sup . WFgll> -

llg HTS

Similarly, we define the nonhomogeneous space X, for 0 < r < % equipped
with the norm

Wfllx, = sup [Ifgllpe-

|WHHT§1

We have the homogeneity properties : Yz, € R?

Wf(x+ I'O)HXT = ”f”XT
If(@+zo)ll =1l

1700y, € 5 Sl 0<A<T

1705, < 51l A>0
The following imbedding

holds.

-1

d
Example 1. If u(z) € D (R?), ¢(z) = <Z|azk|7’“> , e > 0,d > 2, and
k=1

R4

/90(:6) lu(2)|* dz < C/qu(x)dez
Rd
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and ¢ € X; (RY).

Indeed, the inequality

#(2) lu(2)|” do

A jz|<2A
d—2 2
= d
< / Iu(ar:)ldlsz2 dz . / go(x)%dx
A<=} <22 A<|z]|<2X

and the Sobolev theorem imply that for A > 0

o(@) |u(@)|” dz

A<L|z|<2X
2
d
2 |u(z)|” F
< C |Vu(z)|” dz + W—dm . elz)2dz|
A<|z]|<2X A<z <22 z A<z [<2A

where C' does not depend on ). Let us estimate the integral
SO = / o(z)4 da.
A<|z| <22

The domain A <|z| < 2X can be represented as a finite sum of domain €2;
such that |z;| > 3 if z € Q) for j = 1,...,d. Let for instance |z;| > 2. Then

R TE  pe—r

—.
g
Qi A<[el<2A ((%)AY1 + x| 4+ |md|7d)

~

The substitution z; = t; (3) ™ gives the relations

=

dty ---dtg

s < ¢ .
(L4 [t -+ [ta] ™)

Rd-1
< G

1

since the integral is converging. To see this, set t, = 7J°. Then

dtl . 'dtd
d
(L4 62| + - + [ta]74)?

Rd-1
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5ty —(d-1)
S / |TI2 F} dTl"'de
(1+ |72
(1+ |T|
Therefore,
2
o) ju(@)|* dz < Cs / |Vu(ac)|2 dz + / |u|(x|g| dz
A<|z}<2A A<|z]|<2A A< |e|<2A *

Setting A = 2™, m € Z and assuming these inequalities over all m, we obtain

that
2
/cp(:r) lu(z)? dz < © /|vu(x)|2dz+/%d
J g 4y ||
By Hardy’ s inequality in R?, d > 3
/ *““3'2@ <4 /|Vu(x)|2 dz, u(z)eD(RY),
s, |z ~ (d-2)?
Rd

and hence

[ @@ dr < [ [vua) d
R4 R4

Now we recall the definition of Morrey-Campanato spaces {[7], [19]):
Definition 3. For 1 < p < ¢ < +0o0, the Morrey-Campanato space M, 4 is
defined by :

(1.8)
MP»‘I

. — d/q—d/
{f“lfw( ) Wl = sup sup B4 1) 1B<E’R><y>'w<dw<°"}'

Let us define the homogeneous Morrey-Campanato spaces /\./lp’q for1<p<
q < +oo by

1/p
19 Ifl, = sup sude/q-d/P</B ( R)If(y)l”dy> .

Pq z€RE R>0

It is easy to check the following properties :

1
||f()‘m)||j\/lp,q = )\_g”f||/\/lp1q7 0< AS ]-7

P.q

1
IFOl,, =S, . A>0
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We shall assume the following classical results [7].

a) For 1 < p <y, p<gqg < +oo and for all function f so that f €

MpgN L™=
-z o2
I, <Nl NIAIIE
pr,q%' Mp,q
b) For p,q,p',¢' sothat - + 5, <1, 1+ 5 <1, f€ Mg, g€ Mpg.
Then
: 1 1 1 1 1 1
fg€ Mp g with =+ — = =, =+ = = —.
i p P pPa ¢ 4q

¢) For 1 <p<d, we have

YA > 0, N )l g, = IIFlg, -

d) Ifp' <p,
MP,Q c Mp7q’
Mp,g C My g
e) If g2 < ¢, we have

Mp.q1 C Mp,go,

LI =Myq CMpy, p<Lq.

We have the following comparison between multipliers and Morrey-Campanato
spaces :

Proposition 1. For 0 <r < g , we have
X - M2,%7
XT‘ g MQ’%-

Proof. Let f € X,,0< R<1,z0 € R* and ¢ € D, ¢ =1 on B(%,1). We
have

1/2 1/2
R ( / f@Pde) =R F(Ry)[? dy
ja—zol<R -2 |<1

< ([ ismowra)

< R™IF(Ry)llx, (€]l g-
< NF@Wlx, N0llg-
<ClfWIx, -

We observe that the same proof is also valid for homogeneous spaces. a
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Additionally, for 2 < p < % and 0 <r < %, we have the following inclusion
relations :

L7 (RY) € L7 (RY) € M, 4 (RY) C X, (R?) C My a (RY),

where LP*° denotes the usual Lorentz (weak LP) space. For the definition and
basic properties of Lorentz spaces LP¢ we refer to [18].

2. Regularity theorem

In this section we give the regularity criterion by velocity to the Leray type
weak solution of the Navier-Stokes equation (1.1). Before turning our attention
to regularity issues, we start with some prerequisites for our main result. We
use the notations

D, 0

J 6—:5,"
means the j** partial derivative and

V:(Dl,...,Dd)

j=1,....d

the gradient.

9 d
Vo= (DjDk)j)kzl
means the matrix of the second order derivatives. Let
v : RESR!

r = ulx) = (u(),. .. uz))

be a vector field. Then we set

divu = V.uw=Dyu + -+ Dyuy,
Au = divVu= (D} +-- +D})u,
Vu = (Di,...,Dg)u= (Dju){,_
Vi = (DiDi) e u=(D;Dyu)t,
and
wVu = (V) )u= (D + - +usDg)u

= (wDyug+---+ udDduk)izl
whenever this is meaningful. Further we set
div(vu) = Di(wmu)+- -+ Dg(uqu)
= (D1 (wywg) + -+ + Do (wqur) fy—y

where the matrix v u = u ® u = (ujuz)?

i k1 means the usual tensor product.
We prefer the simple notation u u.
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If div w = 0, we call u is divergence free or solenoidal. In this case we get

uVu = Di(wu)+ -+ Dy (ugu) — (u1D1 + - +ugDg)u
= Di(uiu)+---+ Dy {uqu)
= div(uu).

Let
[es] d o0 d\\ 4 : [ed] dyy4
Css (R) = {p e (C&° (®Y))*: divep = 0} C (C5° (RY))".
The subspace
2 (md yorvea iy NP 2 rmdrd -
L; () = Cg, (&) = {ue 12 (R") " diva =0}

obtained as the closure of C§%, with respect to L*-norm ||-|| .. Hj denotes the
closure of C§5, with respect to the norm

lallgrr = llellze + |2 = &) Fu , for 70,

Our definition of Leray-Hopf weak solutions (see e.g., [9], [8]) now reads :

Definition 4 (weak solutions). Let a € L2 and T' > 0. A measurable function
u is called a weak solution of (1.1) on (0, T') if u satisfies the following properties

1
(1) we L= ((0,T); L2) N L? ((O,T);Ho) for all T > 0;
(2) u(t) is continuous in time in the weak topology of L2 with
(ut),4) = (a,¢) as t—0F

for all ¢ € L2;
(3) for any 0 < s <t < T, u satisfies the identity
(2.1)

/ {= (w,8:¢) + (u.Vu, ) + (Vu, Vg) } dr = — (u(t), 6(t)) + (u(s), 4(s))

for all ¢ € H' ((s,t); H}). Here (-,-) denotes the scalar product and
Il .2 denotes the norm in L? (]Rd)d_

Remark 2. For v and ¢ as above, the integral

T

/ (w.Vu, @) dr

0

is well defined since we have by the Sobolev inequality

el e, < C IVl
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that

(w.Vu, @) dr

IN

o_\'i

T
[l g 1912 1]
0

IN

T
¢ sup [lolle [ IVulliedr.
0<t<T
0
Existence of weak solutions has been established by Leray in [12] for initial
velocity in L2 (R?). The result is the following

Theorem 3 (Leray - Hopf). Let T > 0. Let a € L2 (R?) and
1
ue L™ ((0,T); L) N L? <(0,T) ; HU>

be a weak solution of the Navier-Stokes equation (1.1) satisfying the strong type
energy inequality:

22) i +2 [ Ve ds <llalZs  foraa 0<i<T
We assume that the solstion satisfies
llu(t) —all,. = 0 as t — +0.
Let us introduced the class L® ((0,7") ; L7) with the norm |||

LS((O>T)§L7)

s

T
el o 00y = / u(t) 1 dt
0

The classical result on uniqueness and regularity of weak solutions in the class
L?((0,T); LY) was given by Foias, Serrin and Masuda [4], [16], [14].

Theorem 4 (Foias-Serrin-Masuda). Let a € L2 (R?).

(i) Let u and v are two weak solutions of (1.1) on (0,T). Suppose that u

satisfies
2 d )
(2.3) uw€ LP((0,T);L") for =+-=1 with d<~vy<oo.
s

Assume that v fulfills the energy inequality (2.2) for 0 <t < T. Then
we have u=v on [0,T).
(ii) Every weak solution u of (1.1) in the class (2.3) satisfies

) Qu  §uttady
24 - 0,7) x R?
2.4) 5t o ame € C(OT) XK
for all multi-indices a = (a1, ..., aq) with |a] = a1 + -+ aqg < 2.

Kozono and Taniuchi [9] proved
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Theorem 5 (Kozono-Taniuchi). Let a € L2 (R?).

(i) (uniqueness) Let u,v be two weak solutions of (1.1) on (0,T). Suppose
that
u € L?((0,T); BMO)
and that v satisfies the energy inequality (2.2). Then we have u = v on
[0,T].
(i) (regularity) Suppose that u is a weak solution satisfying either of the
following conditions

uwe L*((0,T); BMO) or rotue L'((0,T); BMO).
Then u is a solution of (1.1) in the class
d
(25) ueC(eTHHNNC (6 T):H)NC (L T:H ), s> 5 -1
for all0 < e <T. Actually u is reqular in R? x (0,T).

Our aim result is to show a new regularity criterion for each of the problems
to (1.1).

Theorem 6. Let u be a smooth solution to (1.1) in some interval [0,T) with
initial data a € L2 (IR{d)d. Suppose that the solution u satisfies

T
/HVU(T)”;(M dr < co.
0
Then the solution
.1 .1
ueC ((O,T) JH, (Rd)d) nL? ((O,T);HU (R 0 H? (]Rd)d) :

Moreover,

T
2
e IV + [ [Vutr)]a or
0

T
< CIVuOIE, [1 +exp ( JZCTE d)] .

The same result holds when the assumption Vu € L2 ((O, T);Xl(R‘i)d) is
replaced by u € L*? ((O,T) i BMO (]Rd)d) .

Remark 3. Theorem 6 covers the bordeline case s = 2 and v = d. Our class
L2 ((0,7); X1 (B")") is larger than L2 ((0,7); ¢ (R4)").

To clarify the main part of the result, we recall the known regularity criterion
in the following.
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Lemma 4 (Beirdo da Veiga [1]). If we assume the following condition on the
gradient of velocity for the Leray-Hopf weak solution u :

< v < o0,

T
@8 [IVu@lidr<oo, 2 s
0

~
then the weak solution is smooth on (0,T).

Corollary 1. If we assume the following condition on the gradient of velocity
for the Leray-Hopf weak solution u :

T
/uvu(f)nﬁ(l dr < o0,
0

then the weak solution is smooth on (0,T].

The marginale case ¢ = oo was considered by Kozono and Taniuchiin BM O
frame work.

Lemma 5 (Kozono-Taniuchi [9]). Instead of the condition (2.6), if we assume
the following condition on the vorticity of the weak solution w :

T
/Hrot W) | pago dr < 0
0

then the weak solution is smooth on (0,T)].

The following lemmas play a fundamental role in estimating the nonlinear
term.

Lemma 6. Let f € H'(R?), g(z) = (gi(z)), with V-g =0 and g € L2(RY)%.
Furthers we assume that Vh € X1 (R?). Then there ezists a constant C(d) > 0
independent of f,g and h such that

(2.7) [ 9:9hdz| < €IV la(a0 lglamae 1Vl o
Rd

@8) | [ Vighdz| < CIVSllusn lollizas Vbl g
R4
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Proof. The proof is easy, due to definition of X 1(R?). Suppose that VA €
X1(R?) and using Cauchy-Schwarz inequality, we get

%
/fg-Vhdx < (/Ifl2 IVhIde) 9l L2(ma)a
R R4

2

< C”Vh“j(l(Rd) (/Ivf|2 dx) ”g”L2(Rd)d7
Rd

where the constant C is independent of f, g and h. Thus the Lemma is proved
in the case of (2.7). The proof is similar in the case of (2.8). O

The same result holds when we replace the assumption Vh € X, (R?) by the
assumption h € H1(R?) N BMO(R?). Indeed, we known that
h(z) =log|z| € BMO
and
|Vh|)? < !

=~ T 3
||

then by Hardy’ s inequality in R? (d > 3), we have

/ @ 4, < o) / V5P dr, VS e HYRY).
J, el .

This remark suggest that the lemma will also be holds when we replace

the X;(R?)—norm of Vh by BMO—norm of h. In fact, the following is a
combination of the compensated compactness results of Coifman, Lions, Meyer
and Semmes [2] and the duality of the space BM O, we have :

Lemma 7. Let f € H'(R?), g = (gi(m))'f:1 with V- g = 0 and g € L*(R?)?
and a function h € H (RY)NBMO(R?). Then there exists a constant C(d) > 0
independent of f, g and h such that

(2.9) Kg.Vfhm <C ”Vf“Lz(Rd) HQHLZ(Rd)d “h”BMO(Rd) :

Proof. It is an immediate consequence of Lemma 2 and the duality inequality
(1.4)
[{g.V £, h)| c Hg-vf”yl(nd) ”h”BMo(Rd)

<
< C”vf“LZ(Rd) “g”L2(IRd)d “h“BMO(Rd) .

Next we recall the following well-known result :
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Lemma 8 (Poincaré inequality). Suppose Q is a unit cube in R? of side length
p and f is C* on Q with Vf € L*(Q). There exists ¢ not depending on f such
that

(2.10) /Q 1f —mofldy < c o /Q V@) dy,

where mg f = |’c19—| fQ fly)dy is the integral mean of f on Q.
Combining this result with Proposition 1 gives :
Proposition 2. If f € HY(R*) and Vf € X1(R?), then
' f € BMO(R?).
Proof. Since X1 (R?) C M 4(R%), it follows that
Ve Maa(RY).

By the classical Poincaré inequality (2.10), we have

/ |f () _mB(z,R)f(y)|2 dy < C R2/
B(z,R)

B(«z,R
. d 2
< ORI,
for every ball B(z, R) of any radius R and there holds

) IV ) dy

2 1 / 2
- o — . d
Wl Baro S sup B(i’R)lf(y) mper fW)| dy
2
< VAR,
< CIVAIE, g -

Now we turn into the proof of our Theorem 2.

Proof. Let u be a smooth solution to (1.1) on [0, T). By operating the Laplacian
to the equation and then taking a L? inner product of the equation with (—Auw),
we have

1d 2 2 12

ST IVull72 + HV u”L2 dr = (u.Vu, Au) — (Vp, Au)

d
L= Z u; DjuAudz + (p, div Au)
J=1pa
d

= Z UijU[Auld.’I:,

7,i=1 Rd
where we have used

divu = 0 = div Au.
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Now, we use integration by parts to have

d

Z /uijulAuldx
jl:lR
= - Z /DkuJD w Dywdz — Z /uJD Dyu; Dywdz,
Ik 1= 1 7,k,I= 1
or
d 1 d
Z /Uij (Dkuleu,) dr = 52/1@1)]' IVU|2 dx
Ik, I=1 R4 =1 Rd
= —%/divuqu]2 dz = 0.
Then
d
Z /uijulAu,da: = / Dku] D-Dkul) uldw
7,i=1 Re 75 ,l 1 Rd

= <u.Vu, v u).
From Lemma 6 with
g=Vu, Vf=V?u and h=u
yields directly
[(u.Vu, V2u, )| < ClIVullpagay [|V?0] o gy 1VUllx, e

By the Young inequality, we have

¢
/(Vu.Au,u) dr
0

t
1 2 C
R / 9202 g+ < / IVl e [Vl g
0 0

Hence

1d
(212) 52 IVu@I + [Vl dr < C / 190l 0 1901 oy @
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for all £ > 0. Since Vu € L? ((O,T) - X, (Rd)d>, it follows from the Gronwall
inequality that

t
2 2 2
s )3 < IVl (14008 € [IVul, oy dr
0

from which we get the desired result. 0
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