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ON THE IMPROVED REGULARITY CRITERION OF THE

SOLUTIONS TO THE NAVIER-STOKES EQUATIONS

Sadek Gala

Abstract. This note deals with the question of the regularity of (Leray)
weak solutions of the Navier-Stokes equations in terms of the pressure.

This criterion improves on the existing results.

1. Introduction

This paper studies the regularity criterion for weak solutions of the Navier-
Stokes equations in R3 × [0, T ) :

(1.1)

 ∂tu+ (u · ∇)u−∆u+∇π = 0,
∇ · u = 0,
u(x, 0) = u0(x),

where u = u(x, t) is the velocity field, π = π (x, t) is the scalar pressure of the
fluid, while u0 is a given initial velocity field satisfying ∇ · u0 = 0 in the sense
of distributions.

For u0 ∈ L2(R3) with ∇ · u0 = 0, a global weak solution of (1.1) satisfying

u ∈ L∞
(
R+;L2(R3)

)
∩ L2

(
R+;H1(R3)

)
was constructed by Leray [15] and Hopf [14] in 1951. It is proved that the
weak solution is strong (and unique) locally if the initial datum u0 ∈ H1(R3)
in addition, and the strong solution exists globally for small initial datum
(see [16, 17]). However, the regularity of their weak solutions is one of the
most outstanding open problems in mathematical fluid mechanics and has been
extensively investigated and many interesting results have been established (see
e.g. [1–11,20–22,24] and reference therein).

In [13], He and Gala proved the regularity of weak solutions under the con-
dition

(1.2)

∫ T

0

‖π(·, t)‖2·
B
−1

∞,∞

dt <∞.
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Here and thereafter, Ḃ−1∞,∞ stands for the homogeneous Besov space, (for the
definition see e.g. [13] and [23]). Later, Guo and Gala [23] refined the condition
(1.2) to

(1.3)

∫ T

0

‖π(·, t)‖2
Ḃ−1
∞,∞

1 + ln
(
e+ ‖π(·, t)‖Ḃ−1

∞,∞

) dt <∞.

Motivated by the paper of Guo and Gala [23], the purpose of the present
work is to refine (1.3) as follows.

Theorem 1.1. Suppose that u(x, t) is a weak solution of (1.1) in (0, T ) with
u0 ∈ H1(R3) and ∇ · u0 = 0 in the sense of distributions. If the pressure π
satisfies the following condition:

(1.4)

∫ T

0

‖π(·, t)‖2
Ḃ−1
∞,∞(

e+ln
(
e+‖π(·, t)‖Ḃ−1

∞,∞

))
ln
(
e+ln

(
e+‖π(·, t)‖Ḃ−1

∞,∞

)) dt <∞,

then u is a regular solution in R3 × (0, T ).

This result provides a new information concerning the question of the regu-
larity of weak solutions of the Navier-Stokes equations and extend those of [13]
and [23]. In particular, the double-logarithm estimate (1.4) is sharper than any
other results [4, 23].

Let us recall the definition of weak solution to (1.1).

Definition 1.1 (Weak solutions). Let u0 ∈ L2(R3) with ∇·u0 = 0. A measur-
able function defined on R3 × (0, T ) is called a weak solution of (1.1) on (0, T )
with initial data u0, if u satisfies the following properties:

a) Leray-Hopf class:

u ∈ L∞
(
(0, T ) ;L2(R3)

)
∩ L2

(
(0, T ) ;H1(R3)

)
;

b) ∂tu+ (u · ∇)u−∆u+∇π = 0 in D′
(
R3 × [0, T )

)
;

c) ∇ · u = 0 in D′
(
R3 × [0, T )

)
;

d) the energy inequality:

(1.5) ‖(u(·, t)‖2L2 + 2

∫ t

0

‖∇u(·, τ)‖2L2dτ ≤ ‖u0‖2L2

for all 0 ≤ t ≤ T .

By a strong solution we mean a weak solution of the Navier–Stokes equation
such that

u ∈ L∞
(
(0, T ) ;H1(R3)

)
∩ L2

(
(0, T ) ;H2(R3)

)
.

It is well known that strong solutions are regular (we say classical) and unique
in the class of weak solutions.
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2. Proof of Theorem 1.1

We now give the proof of our main result.

Proof. Before going to the proof, we recall the following inequality established
in [12] (see also [23]):

(2.1) ‖f‖2L4 ≤ C ‖f‖ ·
B
−1

∞,∞

‖∇f‖L2 .

Testing (1.1)1 by |u|2 u, using (1.1)2 and (2.1), we see by Hölder’s inequality
that

1

4

d

dt
‖u(·, t)‖4L4 +

∫
R3

|∇u|2 |u|2 dx+
1

2

∫
R3

∣∣∣∇ |u|2∣∣∣2 dx
= −

∫
R3

∇π · |u|2udx =

∫
R3

πu · ∇|u|2dx

≤
∫
R3

|π| |u|
∣∣∇|u|2∣∣ dx

≤ 1

4

∫
R3

∣∣∣∇ |u|2∣∣∣2 dx+ C

∫
R3

|π|2 |u|2 dx

≤ 1

4

∫
R3

∣∣∣∇ |u|2∣∣∣2 dx+ C ‖π‖ ·
B
−1

∞,∞

‖∇π‖L2 ‖u‖2L4

≤ 1

4

∫
R3

∣∣∣∇ |u|2∣∣∣2 dx+
1

2
‖|∇u| |u|‖2L2 + C ‖π‖2·

B
−1

∞,∞

‖u‖4L4 ,

which yields

(2.2) ‖u(·, t)‖L4 ≤ ‖u0‖L4 exp

(
C

∫ t

0

‖π(·, τ)‖2·
B
−1

∞,∞

dτ

)
.

Here, we have used the elementary inequality (see e.g. [18, 19])

‖∇π‖L2 ≤ C ‖u · ∇u‖L2 .

Next, testing (1.1)1 by −∆u, using (1.1)2, we have

1

2

d

dt
‖∇u(·, t)‖2L2 + ‖∆u(·, t)‖2L2 =

∫
R3

(u · ∇u) ·∆udx

≤ ‖u‖L4 ‖∇u‖L4 ‖∆u‖L2

≤ C ‖u‖
6
5

L4 ‖∆u‖
9
5

L2

≤ 1

2
‖∆u‖2L2 + C ‖u‖12L4 ,

where we have used the Gagliardo-Nirenberg inequality:

‖∇u‖L4 ≤ C ‖u‖
1
5

L4 ‖∆u‖
4
5

L2 .
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Integrating the above inequality over (0, t), we have

(2.3) ‖∇u(·, t)‖2L2 +

∫ t

0

‖∆u(·, τ)‖2L2 dτ ≤ ‖∇u0‖2L2 + C

∫ t

0

‖u(·, τ)‖12L4 dτ.

On the other hand, by a Sobolev embedding theorem
·
H

1

(R3) ↪→ L6(R3), (2.3)
and (2.2), we obtain that

e+ ‖π(·, t)‖L3 ≤ e+ C ‖u(·, t)‖2L6

≤ e+ C ‖∇u(·, t)‖2L2

≤ e+ C ‖∇u0‖2L2 + C

∫ t

0

‖u(·, τ)‖12L4 dτ

≤ e+ C ‖∇u0‖2L2 + C(e+ t) sup
0≤τ≤t

‖u(·, τ)‖12L4

≤ C
(
e+ ‖∇u0‖2L2

)
(e+ t) sup

0≤τ≤t
‖u(·, τ)‖12L4

≤ C0(e+ t) exp

(
C

∫ t

0

‖π(·, τ)‖2·
B
−1

∞,∞

dτ

)
,(2.4)

where the constant C0 = C(e, ‖∇u0‖L2 , ‖u0‖L4). Here, we have used the
elementary inequality (see e.g. [18, 19]):

‖π‖Lq ≤ C ‖u‖
2
L2q for all 1 < q <∞.

Using the fact that L3(R3) ⊂ Ḃ−1∞,∞(R3), it follows that

(2.5) e+ ‖π(·, t)‖Ḃ−1
∞,∞
≤ C(e+ t) exp

(
C

∫ t

0

‖π(·, τ)‖2·
B
−1

∞,∞

dτ

)
.

Now, taking “log” on both sides of (2.5), we can conclude that

(2.6) ln(e+ ‖π(·, t)‖Ḃ−1
∞,∞

) ≤ ln(C(e+ t)) + C

∫ t

0

‖π(·, τ)‖2·
B
−1

∞,∞

dτ.

For simplicity, let

Z(t) = ln(e+ ‖π(·, t)‖Ḃ−1
∞,∞

),

(2.7) E(t) = ln(C(e+ t)) + C

∫ t

0

‖π(·, τ)‖2·
B
−1

∞,∞

dτ,

with E(0) = ln(Ce). Then, the above inequality (2.6) implies that

0 < Z(t) ≤ E(t)

and we easily get

(e+ Z(t)) ln(e+ Z(t)) ≤ (e+ E(t)) ln(e+ E(t)).
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On the other hand, we have

d

dt
ln(e+ E(t)) =

1

e+ E(t)

(
1

e+ t
+ C ‖π(·, t)‖2·

B
−1

∞,∞

)

≤ 1

e2
+ C

‖π(·, t)‖2·
B
−1

∞,∞

e+ E(t)

=
1

e2
+ C

‖π(·, t)‖2·
B
−1

∞,∞

(e+ E(t)) ln(e+ E(t))
ln(e+ E(t))

≤ 1

e2
+ C

‖π(·, t)‖2·
B
−1

∞,∞

(e+ Z(t)) ln(e+ Z(t))
ln(e+ E(t)).

Applying the Gronwall inequality to ln(e+ E(t)), we find

ln(e+ E(t))

≤ ln(e+ E(0)) exp

 T

e2
+ C

∫ t

0

‖π(·, τ)‖2·
B
−1

∞,∞

(e+ Z(τ)) ln(e+ Z(τ))
dτ

 ,

which yields

e+ E(t) ≤ (e+ E(0))

exp

 T
e2

+C
∫ t
0

‖π(·,τ)‖2·
B
−1

∞,∞
(e+Z(τ)) ln(e+Z(τ))

dτ


and from (2.7), we deduce that

(2.8)

∫ t

0

‖π(·, τ)‖2·
B
−1

∞,∞

dτ ≤ (e+ E(0))

exp

 T
e2

+ 1
C

∫ t
0

‖π(·,τ)‖2·
B
−1

∞,∞
(e+Z(τ)) ln(e+Z(τ))

dτ


<∞.

Hence by virtue of (1.5), (2.2), (2.3) and (2.8), we conclude that

u ∈ L∞
(
(0, T ) ;H1(R3)

)
∩ L2

(
(0, T ) ;H2(R3)

)
,

which completes the proof of Theorem 1.1. �
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∞,∞(R3)), Nonlinear Anal. 12 (2011),

3602–3607.
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