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REGULARITY AND SINGULARITY OF WEAK
SOLUTIONS TO OSTWALD-DE WAELE FLOWS

Hyeong-OHK BAE, HiI JUN CHOE, anp Do WaAN KiM

ABSTRACT. We find a regularity criterion for the Ostwald-de Waele
models like Serrin’s condition to the Navier-Stokes equations. More-
over, we show short time existence and estimate the Hausdorff di-
mension of the set of singular times for the weak solutions.

1. Introduction

In this paper, we study the regularity of the weak solutions of the
pseudo-plastic Ostwald-de Waele non-Newtonian models:
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in Qr = Q x (0,T), with the initial condition u(z,0) = uy(z) for z € Q
and the periodic boundary condition, where 2 = {0,1}° and T > 0 is
a fixed number. If » = 0, then the models become the Navier-Stokes
equations. If r < 0 then it is a pseudo-plastic fluid, and if > 0 then
it is a dilant fluid {see Béhme [2]). The values of the parameters pu,r
of some of the pseudo-plastic Ostwald-de Waele models are given in
Whitaker [11]. For example, for paper pulp p = 0.418, r = —0.425, and
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for carboxymethyl cellulose in water u = 0.194, » = —0.434. Since the
viscosity can be treated by scaling, we simply assume that g = 1. Also
for the simplicity we assume that f is a smooth function in Q7.

We assume that any weak solution u,

u e L0, T; WI(Q)) n L™(0, T; L*()),

satisfies
/]u‘qbt— |E(Vulf E(Vu)-E(V¢)—(u-Viu-¢+pV -9+ f-dpdxdt =0

for all ¢ € C®(Qr). Moreover we assume that u satisfies the energy
estimate:

(1.2) sup ||u(t)||2+f | V|2 dx dt
0<t<T

T re2
<C 2 C’/ o, dt
< Cllwll +C [ WA 5

The existence of weak solutions of bipelar fluid for —% < r < 0is given
in Malek, Netas, Rokyta and Ruzicka {6]. For r > 0, the existence of
weak solutions is still open. For any r > —1, the regularity problem is
also open.

From Sobolev’s embedding theorem we know that the solution space
L*(0, 00; HY(2)) N L*=(0, 00; L2())) of weak solutions for the Navier-
Stokes equations (r = 0) is continuously embedded in L:foc(Q x (0, 00)).
But we do not know yet how to bound L*®-norm of » in terms of L%-
norm of u. On the other hand, it is proved by Serrin [9] that any weak
solution u of the Navier-Stokes equations (r = 0) on a cylinder B x {a, b)
satisfying

b

g 3 2
f(/|u]“d:c) dt<oo with ~+2<1, a>3
a f
B

a

is necessarily L® function on any compact subsets of the cylinder. Ob-
serve that when o = 8 = 5, 5 is the critical number for the homogeneous
Lebesgue space. The limiting case 3/a + 2/3 = 1,a > 3 for the initial
value problem was considered by Fabes, Jones and Riviere, [4]. For more
details on Serrin’s condition, refer to Choe [3].
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We define L*? as the set of measurable functions f satisfying

WSl os = (/ [/ |f|“’cl:1:]ga!t)zli < 0.

In Section 2 we find a regularity criterion to the pseudo-plastic Ostwald-
de Waele models:
If u € L*3(Qr) for some (a, 8) satisfying

3,5044 B2
28— 2

with o > Tﬁsr: orifu € L?—_Gaa""x’(QT) and ||u}|LF§Fm < gg for some small

o, then we have
w € L7Y(0, T; W) N L0, T; Wh2(Q)).

Observe that when a = 3 = 5;*7120 is the critical number for the homo-
geneous Lebesgue space. From Sobolev’s embedding theorem we know
that the solution space L™*(0,T; W'7*3(Q)) n L0, T; L*(?)) of weak

solutions is continuously embedded in L3 (Qr). Theorem 2.3 is our
main result in this section.

In Section 3, we find that there is a strong solution locally in time for
—% < r < 0. Moreover, like in the case of the Navier-Stokes equations,
we estimate the Hausdorff dimension of singular times. As is well known
in the case of the Navier-Stokes equations, that is, r = 0, the dimension
of singular times is less than or equal to % Here we show that

2-5
dimension of singular time < i
4+ 57

We note that when v = 0, our result agrees with known result for the
Navier-Stokes equations(see [10]). Theorem 3.1 and Theorem 3.2 are our
main results in this section.
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2. Serrin’s criterion for regularity

In this section, we show that a weak solution is strong if the velocity
u satisfies a Serrin type condition. We let

der{ € CR(Q) : div v = 0},
Vq ' closure of V in Wh(Q)®,
H % closure of V in L2(Q2)?.
Let {,-) is the usual inner product of H. We will use the notations:
def def
lull = flull = {u, ),

def def l/q
lulle ® oy ( ] fule)

If g =7 +2, then ¢’ = 22 satisfies 1/¢' + 1/g = 1.
We remind Korn’s 1nequahty given in Ne¢as and Hlavicek (8] for
s = 2, and in Mosolov and Mjasnikov [7] for 1 < s < o0,

@ Vel O [ 1BV BT ds)

The Korn’s inequality is used for the proof of the energy estimate (1.2).
We also recall the generalized form of Korn'’s inequality in Bellout, Bloom
and Negas [1]

s/2

BEU vu BEU(VU) d_'r for 1 < § <00

<
R e

Although the proof is a straightforward computation, the following lemma.
will be useful for the proof of the existence of weak solutions.

LEMMA 2.1. Let —1 <1 < 0. Suppose u € W* for 1 < s < 2, then
/|V2u|sda: f@k(|E Vu)|"E; (V)0 Eij (Vu) do
+C / | V|~ =5 dz

for some C.
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Proof. Since 0 < s < 2, from Holder inequality and Young’s inequality
we obtain

flVE(Vu)lsdx

= [ BB VET) i

< ( / |E(Vu) ]’|\7’E(Vu)|2d:c)§( [ |E(vu)|~z’+~dw)T
< / BV [VE(Vu)Pds + = / |B(Vu)|~E5de.
Then, Korn’s inequality (2.2) for 1 < s < 2 implies that
/|V2u|sdm < §/|E(vu)|f1\7E(vu)|2dz + C’/ |Vu|" = dz.
From direct calculations, we find that
O (|E(Vu)|" Eij(Vu)) 04 Ei(Vu)
= 6k((E;g(Vu) Egg(vu))% EU(VU)) akEU(Vu)
= |E(Vu)|”8kEij(Vu) OkE,-j(Vu)
+ T|E(VR)|T—QEM(VU) OB (Vu) Ei;(Vu) O E;(Vu).
Hence we obtain that

(V) |VE(Vu)* < —

l+r
and this completes the proof. O

ak (lE(VU) IrEz'j (V'LL)) BkEz-j (VU)

We note that the condition 1 < s < 2 is crucial in the proof of Lemma
2.1. Taking s = r + 2 in Lemma 2.1, we have

f|V2u|r+2d$ S C[Bk(IE(Vu)FEzJ(Vu))BkEU(Vu) dx
Q

e f |Vl +2dz.

Now we are ready to find an energy estimate for the velocity. By the
inner product of {1.1) with Au formally, we get

SNVl + (V1B By (V)), VEy(Vu)) + bla, e, ) = —(f, Au).
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Hence, considering the identity in the proof of Lemma 2.1, we have
d 2 r 2
IVl +C |EV|VE;(Vu)|*dz < [ (u- V)u- Audz + |(f, Au)],

and integrating with respect to time we get

(23) [[Vu()?+C /f BV E,(Vu)|? da dt

Sf/(u-V)u-Audm+f|(f,AU)ldt+||vuo||2-

From Holder inequality we have that

[lsawlas [ [unHa)” [ ([ muray™

Also, from the broof of Lemma 2.1 we have

/ |V E(Vu)f 2dz

L
2z

< ( f |E(Vu)|"|VE(Vu)|2da:):;_2( / [E(Vu)|’"+2dx)

Then, by Korn’s inequality {2.2), we have

(2.4) / |v2Ur+2d$
< (fisearrostoar) ([ )
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Hence, combining all the previous estimates, we obtain

]l(f,Au)|dt

<[] .
X ( / |E(V)[ |VE(Vu) 2 d:c)%( / V72 dg:) “‘:”} dt
< {/ [(f|f = d:a: = (/|Vu|r+2dx)’;‘%] dt}i
X U |E(Vw)|"|VE(Vu) dz dtr

< [//|f|ﬁdxdt:|m [//IVui”zdrrdt]m

x [ / \B(VW)[IVE(Va)] do dt] :

<C [ // NE dmdt} = [ /f pE(vu)MVE(vu)Pdmdtr

In the last step, the a priori assumption u € L'*2(0,T'; V,;2) is applied.
Consequently, by Young’s inequality, we have

r-!
=1 da:

2r-1)
2

(2.5) /[ f,Au)|dt<O[

= dmdt]

te f f \E(V)[|VE(Vu)? dz dt.

We now consider the nonlinear convection term. The Serrin type con-
dition is necessary to have a closed form of inequality of strong norms.
Again, the proof is straight forward, but the computations are rather
complicated because of inhomogeneous exponents. For the relevant esti-
mates of the Navier-Stokes equations, we recall that Choe[3] considered
a similar computation when r = 0.
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LEMMA 2.2. We Jet —% < r < 0. Suppose that u € L*® such that

6
@2 575 and

3 Sr+4  Sr+2
+ <

(26) o 28 — 2

we have

/ |(w- Viu- Au|dzdt < C||u||0s
J.nr—(!r—in—ﬁ r;?.;r:l—:&
xsup ( f Vulde) / BFIVEV[ dodt)

Ifue Li‘%""’, then we have

//l(u +Vu- Auldzdi < Clluf|, 5.
dar—3r-2a-§

xsup( / |Vu|2d:r) br=) ( / |E|T|VE(vu)|2d$dt)%?’(_:T31.

Proof. We note that & > 1 and hence we have

1 . et
/(u.V)u-Aud:c < (/|”u,|“d:1!:)cr (f|Vu|ﬁ |Aufa-t dm) o
Moreover knowing that o, 5 > 1 and integrating in time, we obtain
& 13
/ {u-Viu-Audzdt < [f(/[u|adx) dt]
x U(/|vu|a*‘l*1|au|ﬁ d:::)TEgTdt

Since we are assuming —-§~ < r < (0, we find that

i

1"+2<3T‘+6< 6 <a
r+1 Aar+2 245 —
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Thus, from careful adjustment of exponents, we get
o a r—8r—4¢
/lvulﬁ IAuln_—f d:L‘ = / quI {n—l)(ai—-l |Vfu’| n~l m---l) IAult, 1 dw
] Vuf? de '::.?’[nff /‘lvulg_gz i )H%-—u—%
f |Au|r+2 dr) e
dor—3r-20—6 —ar—2r=4
< (/lvul‘zdx)(n_—lm (/‘Vzulr-(-?.d )TH_(TWWQT)
X (f{Aul”+2 dx)r—_i#ij
-ln-r Ar—2or— 2o~ 3)
< ([qu[zd — l)[ur— flvg lr+2d a—1 ar—~1

Hence, integrating in time and applying Hoélder inequality in time inte-
gral, we have

U f‘v"“'l“\ﬁu\“ldx)"lﬂp‘ rT
<sup ( [1vuras) [ [ ( f flvgulw {,—(ﬁdt]’%‘-“

286 a+3 <1
B—1lalbr+4) ™

If

(27)

then, we have

U /IVUI"*IAm“dx)"“ ldt]%

dar=3r=20-§
< sup / |Vul® dx e f |V2u|’+2d$dt) “H)
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By {(2.4), we have

g-1

-1 3 e
[/ /IVu|-~ T | Ayl d:z:) s dtl

dor=3r—20-8

< sup /IV&F dx)wr
(r=2}{o—3 o3
/ f B[V B(Vu)] da dt) = f f V2 dz dt) ™

r+2){r—3

<Csup(/qu\2dm) o //|E| |VE(Vu)|2dxdt) e

Therefore, we have

dor—3r—20-6
{dr—d

(2.8) f/(u -Vu - Audz dt < Cllu|| g0 sup [qulzd:c)

]flEl |VE(Vu)l* d:cdf:)L‘:%ST32

For the case o = 5 +5 - and 8 = co, we may follow a similar way and omit
the proof. ]

The relation of the exponents can be given
dar —3r+20—6  (r+2){a+3)
a(5r + 4} albr+4)
and the condition (2.7) on « and 3 is equivalent to
3 5r+4  5r+42
— < f >
a+ 3 = 5 0ra_2+5r,

which is corresponds to Serrin’s condition for the Navier-Stokes equa-
tions (r = 0):

3 2

—+-=<1L

a f

Now we are ready to prove our main result in this section which proves
that if the velocity u satisfies a Serrin type condition (2.6), then u is a

strong solution.
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THEOREM 2.3. Let —% < r < 0. Suppose that ug € W(Q). Let u
be a weak solution of (1.1). Ifu € L**(Qr) for some (o, 3) satisfying
(2.6) with o > 32~ then we have

24572
(2.9) w € L0, T; W2™2(Q)) n L=(0, T; W2(£))
and
(2.10)

f liks d:cdt}

r=2
=, dt+ C||Vug|)?
Wl T ()

sup/ |Vu(t)|2d:c+/ |V 2 dzdt < C
t Ja

+c [

for some C. In case a = =, there is a number &y such that if u €
LE5%°(Qr) and ||u||”__557w < €9, then we have (2.9) and (2.10).

REMARK. Forr < —%, the existence of a weak solution is unknown
yet. However, there exists a sequence {u™}of Galerkin approximate
solutions to (1.1). If {u™} are in L**(Qr), then there exist a limit » of
a subsequence {u™ } of {u™}, which becomes a strong solution.

6 _ 6 . .
Proof. Assume o > 5=. The case a = 3% will be considered later.

Combining (2.3), (2.5) and (2.8}, we have that for ¢, 0 <t < T,

IVa(t)]? + C ff B |V By (V) da dt
4ar=3r=2n—8

S C”“”Ln.ﬁ sup (f ¥VU|2 d:r) (B4

(r—2_!(04~3
< / |V E(Vu)P dadt) ™
—e—C[jflf'r‘—%dxdt} 1|l

We know that L? norm is absolutely continuous with respect to Lebesgue
measure. Consequently, for any given € we can choose a sequence of time

{O,TlaT21"' )T;:rnvkls"' :Tm}
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Tt %
/ [f |u|* da:] dt <e
T Q

for all ¢, where T,, = T. If we consider the time integration on (T3, T;,1],
we have

such that

Tioa
sup f |Vu(t)? dz + Cj f |E["|VE;(Vu)| dz dt
L} I 1

T.5t<Ti

Ti1
SEC[ sup /|Vu|2d$+/ f|E|"|VE(Vu)|2da:dt]
T:

T:<t<Ti,

it

2{r+1

Teo ;L et
+c[f jiﬂmdxﬁ} + |Vl
T

If ¢ is small enough, then we get

Tiy
(211)  sup /[Vu(t)|2d3:+0/ f|E|T|VEij(Vu)|2dxdt
Q T: 2

Ti<t<Tin
Ty i S
SCU fmmaﬂ
T

+[[Vuol]®.
Also, from Lemma 2.1, we have

T4
sup f |Vu(t)*dz + C / / (V2|2 dz dt
-1/ Ti 2

Ti<t<T;
T‘i—l 2 ﬂr';ﬁﬂ Tidvl

< CU f|f|m dmdt] +C /qu|’+2d:cdt+iiVU01!2.
T, T, J0

Therefore, iterating on 4 and using the energy estimate (1.2), we have
supf IVu{th?dz +f |V2u|"*? dx dt
t Jo

SCUfIfl%dwdﬁrSl+C/Nfﬂg m)d«'f+C’HV”uuH2

W—";_:%

for some €.
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The case € L¥5 can be treated from the estimate

Jnr 3r-—2n~ﬁ

e s ] VuPdz)

—2! o-3)
[ Tog |VE(V’u)|2dmdt) e

dor=3r—2a-6

< gysup f |Vul? da:) e
(r=N{er-3)
x ( /f |Er|VE(vu)|2dxdt) e

3. Strong solutions and time singularity

We now show the short time regularity. Suppose that f is independent
of time ¢{. Let u be a weak solution. We follow the idea used in Foias,
Guillopé and Temam [5], and in Bellout, Bloom and Negas [1]. Consider
the inner product of (1.1) with

~8u
1+ V)

where A > 1 will be a number determined later. Therefore, from inte-
gration by parts, we have

_1 ma, O )
SO IV + e [ BB BoE
'1— 3 = 2,,|7+2

< (1 + [Vui2P f]Vu] +1F17 + €| Vil d:r;),

Integrating the previous inequality with respect to ¢, we obtain

s (4 9@ - o+ 1vuo )

O(|E|"E)OLE
C RN TR
¢ T vuER

< ] e (7

dx dt

=t eV |’"+2) dz dt.
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Now we need to estimate the second derivative term. Considering Lemma 2.1
and taking ¢ small, we have

1
31— N

((1 + ”vu(T)Hz)l—A {1+ “vu(o)”2)1—,\)

K(|E| EYOLE
<0 | e
|Vul® + Iflr—1 + &|Vu|™+?
= / (L + [Vl

dx dit

=32

3 [|Vultde}
ff B da:dt+e/( ) drdt + Ct

1+ [[Vul?)* (14 [[Vul[*)*
_veP
(3.1) f/ T oo e+ O

since A > 1 and f is smooth. In fact, with a little careful computations
we can allow less regularity on f, but the proof will be natural.

We now consider the convection term. We restrict r to the case
-1/5 < r < 0. Since we are considering periodic functions, Vu is
average free and hence we have Sobolev inequality controlled by second
derivatives only. With this observation and Hélder inequality, we obtain

/|Vu|3d:v=/|Vu
/qude CM /|Vu| T d:c i
< f [Vu|2dx f (\72u(f+2dm)

By Lemma 2.1, we can estimate L2 norm of the second derivatives in
terms of nonlinear energy functions and we have for any given small ¢,

f IVl do
f|Vu|2 d:z:

12r-6 | Jr—
Fra Jrar 4 dm

L —3r
/|EL |VE(Vu)|2dx s f|vu|f+2d:c :
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and

(3:2) fqu]?’d;g < %"(/IVulzd:c)l—?%i(-/|vu|r+2dx)%
e [ 1811V ETP as

For0>r>—1/5 onehas 0 < =3¢ < 1.

Frid
We define
def 12r 4+ 6
T o427
and set

AR £ 1+ [Vulpl.
If we take € small, from (3.1) we obtain

77' + 2 ar —d _ar—-i
“lor+s (A(t) - ARy )

+C f = f B[ |V E(Va)[? da dt
t =3r
< c/ f|Vu|’”+2da:)mdt+Ct
<c ff !Vul"+2dzdt)”” ¥+ Ct

< Cc(t% +1).

Hence we can estimate A(t) in terms of time so that

Y Lt
10r+8(t%+t):| ar—4.

Alt) < [A(O)-%‘ C
Hence, there is a time T depending on uy, f and & such that

sup ”vu(t)” < C(uﬂ'n.f) 5)1
0<t<Ty

and .
0
[ /lvzu[”z drdt < Clug, f,6),
0

where C(uyg, f,0) depends on wug, f and 4. Indeed, we can explicitly
compute Tj in terms of A(Q) and we state this fact as a theorem of the
short time regularity.
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THEOREM 3.1. Let —3 < r < 0. Suppose that
A(0) & f (1+ |Vu(0)|*) dz < oo,
Q

then there is a strong solution on (0,Ty), for all T satisfying

10-—2
r-2

Ty +Tp < CA(0) 72

for some C.

We now estimate Hausdorff dimension of the set of singular times.
When r = 0, it is known that the dimension of set of singular times is
less than or equal to 3. In particular, we refer to Ch. 5 of Temam [10]
for a detailed proof for the case of r = 0.

We may assume that T < 1. Once we estimated the life time interval
of strong solution, we may follow a known method for Navier-Stokes

equations to estimate the Hausdorff dimension of singular time. We let
oY T /-|Vu|2 dz(t) < oo},

then O is right open from Theorem 3.1. So O is the countable union of
semi-open intervals, say,

0= U[a,—, b,)
In particular, we set the open set
OI = U(aia b!'):

then § & 0,71\ O, is closed and has Lebesgue measure zero. Let
t € (a;, ;). Then, by Theorem 3.1, we have
C
(1+ u@0) =
Since 0 < ¥2 < 1, we have (b; — )77 > (b; —t), and
10r-2 C

R £ PaT0)

(b = &) + (b~ 1) 2

Hence,
10r=2

(b — )77 < C(1+ ||lu(®)]*®).
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Integrating this from a; to b;, we have

(b~ 08 < C(bi— s + f (| dt)
Therefore, we have
Z(bi—a & <C' T+j ||t ||2dt < 00.
For every £ > 0, we can find a finite part I, of I such that
Z(ﬁz‘ —a;) <e, Z(ﬁg —)t¥ <.

il igl.

The set [0, 7] \ User, (a;, b;) is the union of finite number of mutually
disjoint closed interval, say, B;, j =1, -+, N. It is clear that U;-V:IBJ,' D
S. Since (a4, 5;) are mutually disjoint, (c;, 3;) i1s contained in one and
only one interval B;. We denote I; the set of i’s such that B; D (o, 3;).
It is clear that I, I;,--- , Ix is a partition of I and that

B; = (uie,j (ai,Bi)) U (Bj ms), for all .

Hence
diam B; = Z(ﬁi —a;) <k,
and
N 2-5r
dHF)(S) < diam B; )"
(12)15) < 3 ()
< Z (Z(ﬁz‘ - ai)) N
=1 i€l
< (ﬁ - at)zzg:
i,
<eg

H]

where dH* is the k-dimensional Hausdorff measure. Since ¢ is chosen
arbitrarily, we conclude:

THEOREM 3.2. Let u be a weak solution, r € (—3,0]. Then there

exists a closed set S C [0, T}, whose 23 -dimensional Hausdorff measure

vanishes, such that u is continuous from [0,T] \ § into V5.
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