• Title/Summary/Keyword: weak monotonicity

Search Result 9, Processing Time 0.022 seconds

Lp SOLUTIONS FOR GENERAL TIME INTERVAL MULTIDIMENSIONAL BSDES WITH WEAK MONOTONICITY AND GENERAL GROWTH GENERATORS

  • Dong, Yongpeng;Fan, Shengjun
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.985-999
    • /
    • 2018
  • This paper is devoted to the existence and uniqueness of $L^p$ (p > 1) solutions for general time interval multidimensional backward stochastic differential equations (BSDEs for short), where the generator g satisfies a ($p{\wedge}2$)-order weak monotonicity condition in y and a Lipschitz continuity condition in z, both non-uniformly in t. The corresponding stability theorem and comparison theorem are also proved.

RELAXED PROXIMAL POINT ALGORITHMS BASED ON A-AXIMAL RELAXED MONOTONICITY FRAMEWORKS WITH APPLICATIONS

  • Agarwal, Ravi P.;Verma, Ram U.
    • East Asian mathematical journal
    • /
    • v.27 no.5
    • /
    • pp.545-555
    • /
    • 2011
  • Based on the A-maximal(m)-relaxed monotonicity frameworks, the approximation solvability of a general class of variational inclusion problems using the relaxed proximal point algorithm is explored, while generalizing most of the investigations, especially of Xu (2002) on strong convergence of modified version of the relaxed proximal point algorithm, Eckstein and Bertsekas (1992) on weak convergence using the relaxed proximal point algorithm to the context of the Douglas-Rachford splitting method, and Rockafellar (1976) on weak as well as strong convergence results on proximal point algorithms in real Hilbert space settings. Furthermore, the main result has been applied to the context of the H-maximal monotonicity frameworks for solving a general class of variational inclusion problems. It seems the obtained results can be used to generalize the Yosida approximation that, in turn, can be applied to first- order evolution inclusions, and can also be applied to Douglas-Rachford splitting methods for finding the zero of the sum of two A-maximal (m)-relaxed monotone mappings.

Efficient Algorithms for Approximating the Centroids of Monotone Directions in a Polyhedron

  • Ha, Jong-Sung;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.12 no.2
    • /
    • pp.42-48
    • /
    • 2016
  • We present efficient algorithms for computing centroid directions for each of the three types of monotonicity in a polyhedron: strong, weak, and directional monotonicity, which can be used for optimizing directions in many 3D manufacturing processes. Strongly- and directionally-monotone directions are the poles of great circles separating a set of spherical polygons on the unit sphere, the centroids of which are shown to be obtained by applying the previous result for determining the maximum intersection of the set of their dual spherical polygons. Especially in this paper, we focus on developing an efficient method for approximating the weakly-monotone centroid, which is the pole of one of the great circles intersecting a set of spherical polygons on the unit sphere. The original problem is approximately reduced into computing the intersection of great bands for avoiding complicated computational complexity of non-convex objects on the unit sphere, which can be realized with practical linear-time operations.

CONNECTEDNESS AND COMPACTNESS OF WEAK EFFICIENT SOLUTIONS FOR VECTOR EQUILIBRIUM PROBLEMS

  • Long, Xian Jun;Peng, Jian Wen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1225-1233
    • /
    • 2011
  • In this paper, without assumption of monotonicity, we study the compactness and the connectedness of the weakly efficient solutions set to vector equilibrium problems by using scalarization method in locally convex spaces. Our results improve the corresponding results in [X. H. Gong, Connectedness of the solution sets and scalarization for vector equilibrium problems, J. Optim. Theory Appl. 133 (2007), 151-161].

GLOBAL ATTRACTOR FOR A CLASS OF QUASILINEAR DEGENERATE PARABOLIC EQUATIONS WITH NONLINEARITY OF ARBITRARY ORDER

  • Tran, Thi Quynh Chi;Le, Thi Thuy;Nguyen, Xuan Tu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.447-463
    • /
    • 2021
  • In this paper we study the existence and long-time behavior of weak solutions to a class of quasilinear degenerate parabolic equations involving weighted p-Laplacian operators with a new class of nonlinearities. First, we prove the existence and uniqueness of weak solutions by combining the compactness and monotone methods and the weak convergence techniques in Orlicz spaces. Then, we prove the existence of global attractors by using the asymptotic a priori estimates method.

LONG-TIME BEHAVIOR OF SOLUTIONS TO A NONLOCAL QUASILINEAR PARABOLIC EQUATION

  • Thuy, Le Thi;Tinh, Le Tran
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1365-1388
    • /
    • 2019
  • In this paper we consider a class of nonlinear nonlocal parabolic equations involving p-Laplacian operator where the nonlocal quantity is present in the diffusion coefficient which depends on $L^p$-norm of the gradient and the nonlinear term is of polynomial type. We first prove the existence and uniqueness of weak solutions by combining the compactness method and the monotonicity method. Then we study the existence of global attractors in various spaces for the continuous semigroup generated by the problem. Finally, we investigate the existence and exponential stability of weak stationary solutions to the problem.

Interpretations of Negative Degree Sentences and Questions

  • Kwak, Eun-Joo
    • Journal of English Language & Literature
    • /
    • v.56 no.6
    • /
    • pp.1135-1161
    • /
    • 2010
  • The interpretations of degree expressions require the postulation of new entities to represent degrees. Diverse entities such as degrees, intervals, and vectors are adopted for degree expressions. Positive degree sentences and questions are properly construed with the introduction of these entities, but their negative counterparts need more consideration. Negative degree sentences show dual patterns of entailments depending on contexts, and negative degree questions are unacceptable, making weak islands. To explicate the distinct nature of negative degree sentences and questions, Fox & Hackl (2006) provide an analysis based on degrees while Abrusan & Spector (2010) suggest a proposal in interval readings of degree expressions. I have pointed out the theoretical problems of these analyses and proposed an alternative in the framework of the vector space semantics, following Winter (2005). Bi-directional scales in vector space fit well with the dual patterns of negative degree sentences, and the notion of a reference vector is useful to accommodate the contextual influence in negative degree sentences and to deal with the unacceptability of negative degree questions.

The Concept of Fuzzy Probability

  • Sook Lim;Um, Jung-Koog
    • Journal of the Korean Statistical Society
    • /
    • v.21 no.2
    • /
    • pp.111-125
    • /
    • 1992
  • Since Zadeh's definition for probability of fuzzy event is presented, alternative definitions for probability of fuzzy event is suggested. Also various properties of these new definitions have been presented. In this paper it is our purpose to show the works continued by finding a natural definition of a fuzzy probability measure on an arbitrary fuzzy measurable space. Thus, the main process is to observe fuzzy probability measure to be qualified by weak axioms of boundary condition, monotonicity and continuity suggested by Klir (1988). Especially, we will show that these axioms are satisfied through in succession of modifications from the Yager's method.

  • PDF

SOLVABILITY OF NONLINEAR ELLIPTIC TYPE EQUATION WITH TWO UNRELATED NON STANDARD GROWTHS

  • Sert, Ugur;Soltanov, Kamal
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1337-1358
    • /
    • 2018
  • In this paper, we study the solvability of the nonlinear Dirichlet problem with sum of the operators of independent non standard growths $$-div\({\mid}{\nabla}u{\mid}^{p_1(x)-2}{\nabla}u\)-\sum\limits^n_{i=1}D_i\({\mid}u{\mid}^{p_0(x)-2}D_iu\)+c(x,u)=h(x),\;{\in}{\Omega}$$ in a bounded domain ${\Omega}{\subset}{\mathbb{R}}^n$. Here, one of the operators in the sum is monotone and the other is weakly compact. We obtain sufficient conditions and show the existence of weak solutions of the considered problem by using monotonicity and compactness methods together.