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CONNECTEDNESS AND COMPACTNESS
OF WEAK EFFICIENT SOLUTIONS
FOR VECTOR EQUILIBRIUM PROBLEMS

XIAN JUN LONG AND JIAN WEN PENG

ABSTRACT. In this paper, without assumption of monotonicity, we study
the compactness and the connectedness of the weakly efficient solutions
set to vector equilibrium problems by using scalarization method in locally
convex spaces. Our results improve the corresponding results in [X. H.
Gong, Connectedness of the solution sets and scalarization for vector
equilibrium problems, J. Optim. Theory Appl. 133 (2007), 151-161].

1. Introduction

It is well-known that the vector equilibrium problem provides a unified math-
ematical model for a wide range of practical problems, which includes as spe-
cial cases vector optimization problems, vector variational inequality problems,
vector complementarity problems and vector saddle point problems. In re-
cent years, a large number of researches have been devoted to the existence
of solutions for various kinds of vector equilibrium problems (see, for example,
[1, 3, 6, 7, 10, 13] and the references therein).

On the other hand, one of the most important problems of vector variational
inequalities and vector equilibrium problems is to investigate the properties of
the solutions set. Among many desirable properties of the solutions set, the
connectedness is of considerable interest, due to it provides the possibility of
continuously moving from one solution to any other solution. In [12], Lee
et al. investigated the path-connectedness of the set of weakly efficient so-
lutions and the set of efficient solutions for vector variational inequalities in
finite-dimensional spaces. In [4], Cheng discussed the connectedness of the set
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of weakly efficient solutions for weak vector variational inequalities in finite-
dimensional spaces by using scalarization method. In [7], Gong obtained the
connectedness of the set of Henig efficient solutions and the set of weak efficient
solutions to the vector-valued Hartman-Stampacchia variational inequality in
normed spaces by using scalarization method. Recently, Gong [8] introduced
the concepts of f-efficient solution, Henig efficient solution, globally efficient
solution, weakly efficient solution, superefficient solution and cone-Benson ef-
ficient solution to vector equilibrium problems and gave some scalarization
characterization for various proper efficient solutions. By using the scalariza-
tion results, he investigated the connectedness of the Henig efficient solutions
set, globally efficient solutions set, weakly efficient solutions set, superefficient
solutions set and cone-Benson efficient solutions set for vector equilibrium prob-
lems in locally convex spaces. Very recently, by virtue of a density result and
scalarization technique, Gong and Yao [9] first discussed the connectedness of
the set of efficient solutions for generalized systems in locally convex spaces.

In above mentioned works, the monotonicity plays an important role in
deriving the connectedness of the sets of various proper efficient solutions to
vector equilibrium problems and vector variational inequality problems. In this
paper, without assumption of monotonicity, we obtain the compactness and
the connectedness of the weakly efficient solutions set for vector equilibrium
problems in locally convex spaces. Our results improve the corresponding ones
of Gong [8].

2. Preliminaries

Throughout this paper, let X be a real Hausdorff topological vector space
and let Y be a real locally convex Hausdorff topological vector space. Let K
be a nonempty closed convex subset of X. Let C be a pointed closed convex
cone Y. Let Y* be the topological dual space of Y, and C* = {f e Y* : f(z) >
0 for all z € C'} be the dual cone of C.

Denote the quasi-interior of C* by C¥, i.e.,

Ct:={fecY*: f(y)>0forally € C\{0}}.
Let D be a nonempty subset of Y. The cone hull of D is defined by
cone(D)={td: t >0, d e D}.

Denote the closure of D by cl(D) and the interior of D by intD. A nonempty
convex subset B of C' is called a base of C' if C' = cone(B) and 0 ¢ cl(B). It is
easy to see that C* # () if and only if C has a base. Set

C® = {f € C*: there exists t > 0 such that f(b) >t for all b € B}.

By the separation theorem of convex sets, we know that C® # ). Obviously,
C» C C*. Let B be a base of C. Then, 0 ¢ cl(B). By the separation theorem
of convex sets, there exists f € Y*\{0} such that

r=1inf{f(b): b€ B} > f(0) =0.
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Set Vg ={y € Y : |f(y)| < 5} It follows that Vp is an open convex circled
neighborhood of 0 in Y. It is clear that

inf{f(y): y€ B+ Vg} > g

Note that for any convex neighborhood U of 0 with U C Vg, B+ U is a convex
set and 0 ¢ cl(B + U). Therefore, Cyy(B) := cone(B + U) is a pointed convex
cone and C\{0} C intCy (B).

Let F: K x K — Y be a vector-valued mapping. Gong [7, 8] considered the
following vector equilibrium problem (in short, VEP): finding « € K such that

F(z,y) ¢ —Aforally € K,

where AU {0} is a convex cone in Y.
‘We recall some definitions and lemmas which will be used later.

Definition 2.1 ([7]). Let intC # 0. A vector x € K is called a weakly efficient
solution to the (VEP) if

F(z,y) ¢ —intC for ally € K.
Denote by Viy (K, F') the set of all weakly efficient solutions to the (VEP).
Definition 2.2 ([7]). Let f € C*\{0}. A vector z € K is called a f-efficient
solution to the (VEP) if

f(F(z,y)) > 0forally € K.
Denote by V¢ (K, F') the set of all f-efficient solutions to the (VEP).
Definition 2.3 ([5]). A set-valued mapping G : K — 2% is called a KKM-

mapping if, for any finite subset {x1,zo,...,2,} of K, co{x1,za,...,2,} is
contained in |J}_; G(z;), where coA denotes the convex hull of the set A.
Lemma 2.1 ([5]). Let M be a nonempty subset of X and G : M — 2% be a

KKM-mapping. If G(x) is closed for any x € M and is compact for at least
one x € M, then (¢, G(y) # 0.

Definition 2.4 ([14]). A vector-valued mapping h : K — Y is said to be
C-convex on K if, for any x1,29 € K and A € [0, 1], one has

A(z1) + (1 — Nh(@s) € h(Azy + (1 — Nza) + C.

Remark 2.1. (i) It is easy to see that h is C-convex on K if and only if for any
z; € K and \; € 0,1] (i =1,2,...,n) with >1" | A; = 1, we have

i=1 i=1

(ii) If h is C-convex on K, then h(K) + C is a convex set.

(iii) If —h is C-convex on K, then h is said to be C-concave on K.

(iv) If f € C*\{0} and h is C-convex on K, then foh: K — R is convex.

(v) If hy, hy : K — Y are two C-convex vector-valued mappings on K, then
hi + ho is C-convex on K see [14, Proposition 6.7].
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Definition 2.5 ([14]). A vector-valued mapping h : K — Y is said to be
C-lower (C-upper) semicontinuous at 2y € K if, for any neighborhood U of 0,
there exists a neighborhood U(zg) of g such that

h(z) € h(zg) + U+ Cfor allz € U(xg) N K
(h(z) € h(zg) + U — C for all x € U(xp) N K).

h is said to be C-lower (C-upper) semicontinuous on K if it is C-lower (C-
upper) semicontinuous at all 2y € K.

Remark 2.2. If f € C*\{0} and h is C-lower (C-upper) semicontinuous on K,
then foh: K — R is lower (upper) semicontinuous on K; see [3].

Definition 2.6 ([2]). Let S : K — 2Y be a set-valued mapping.

(i) S is said to be upper semicontinuous at x € K if, for any open set V
containing S(z), there exists an open set U containing x such that, for all
teU, S(t) CcV; S is said to be upper semicontinuous on K if it is upper
semicontinuous at all x € K.

(ii) S is said to be closed if Graph(S) = {(z,y) :z € K and y € S(x)} is a
closed set in K x Y.

Lemma 2.2 ([2]). Let S : K — 2Y be a set-valued mapping. If S is closed and
Y is compact, then S is upper semicontinuous.

Lemma 2.3 ([7]). Suppose that intC # @ and that F(z,K) + C is a convex
set for each x € K. Then

V(K. F)= | ViK,F).
fec=\{0}

3. Main results

In this section, we shall discuss the compactness and the connectedness of
the weakly efficient solutions set to the vector equilibrium problem by using
the scalarization results. Let ¢ : K x K — Y and ¢ : K — Y be two vector-
valued mappings. In the sequel, unless specified otherwise, we assume that
F(z,y) = o(x,y) + ¥(y) — v(z).

First, we have the following existence results for the (VEP).

Theorem 3.1. Let intC' # (. Suppose that the following conditions are
satisfied:
(i) for any z € K, p(z,z) € C and ¢(z,-) is C-convex on K;
(il) v is C-lower semicontinuous and C-conver on K;
(iii) for any y € K, p(-,y) are C-upper semicontinuous and C-concave on
K;
(iv) there exist a nonempty compact convex subset E of K and yg € E such
that any x € K\E satisfies o(z,y0) + ¥(yo) — ¥ (z) € —intC.
Then, for any f € C*\{0}, V;(K,F) is a nonempty compact convex subset of
E.
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Proof. Let f € C*\{0}. Define a set-valued mappings A4 : K — 2% by

Aly) ={z e K: f(¥(¥) + flo(x,y)) = f(Y(2)}, Yy € K.

By assumption (i), we have y € A(y). Then, A(y) # 0 for any y € K. First,
we prove that A is a KKM-mapping. In fact, suppose by contradiction that
there exist a finite subset {y1,y2,...,yn} of K and \; > 0, i = 1,2,...,n
with Y0 | A; = 1 such that z = >°1", Nyi & Uiq A(y;). Then, z ¢ A(y;),
i=1,2,...,n. It follows that

f(d](yl)) + f(@(%%)) < f(d](m))v i=12,...,n,

which implies that

FONbw)) + FO_ N, vi) = > X ((wi) +2Af (1))
=1 i=1 =1

< f(¥(x)).

Since ¢ and ¢(z,-) are C-convex,

Z)\ﬂﬁ yv +f ZANO T yz > f Z zyz Z)‘vyz
=1 =1 1=1

(@) + flo(x, z))
> f(d)( );
which contradicts (3.1). Thus, A is a KKM-mapping.
Next, we prove that for any y € K, A(y) is closed. Indeed, for any fixed

y € K, let {z,} C A(y) such that z, — z¢. By the closedness of K, we have
xo € K. Since {z,} C A(y), one has

FWW) + Fle(a,y)) = f((xa).

Since ¢(+,y) is C-upper semicontinuous and 1 is C-lower semicontinuous,

fWW) + fle(xo,y)) = f(¥(y)) + limsup f(p(za,y))
> limsup f(¢(xa))
> liminf f(¢(z4))
> f(¥ (o)),

which implies that 2o € A(y). Thus, for any y € K, A(y) is closed. By
the assumption, A(yo) is closed and A(yy) C E. Since E is compact, A(yo)
is compact. By Lemma 2.1, we obtain (), ., A(y) # 0. Therefore, there
exists © € [, cx A(y). Noting that Vi(K,F) = (), cx A(y). It follows that
z € V3(K,F), ie., Vi(K,F) # (. It is easy to see that V;(K,F) C E is a
compact set.

Finally, we show that Vy (K, F') is a convex set. Since Vi (K, F)=(,cx A(y),
we need only to prove that for any y € K, A(y) is convex. In fact, for any fixed
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y € K, let 21,29 € A(y) and X € [0,1]. Then, Ax; + (1 — N)as € K and
(3-2) FW) + fle(z,y) = fi(1)),

(3.3) F) + fo(x2,y)) = f(¥(x2)).
Multiplying both side of (3.2) by A and of (3.3) by 1 — A, and adding them, we
get

FW) + Af(e(z1,y)) + (L= A f(e(2,9) = Af(U(21)) + (1 = A) f((22)).
This fact together with the C-convexity of ¢ and the C-concavity of ¢ with

respect to the first argument yields
FWW) + fle(Azr + (1 = Nz2,y)) = f(¥(Az1 + (1 = AN)z2)).

It follows that Ax; + (1 — A)ze € A(y). Therefore, for any y € K, A(y) is
convex. And so V;(K, F) is convex. This completes the proof. O

Now we establish the connectedness of the weakly efficient solution sets to
the (VEP).

Theorem 3.2. Let intC # 0, 0 € K, ¥(0) = 0 and ¢(0,0) = 0. Let ¥(K)
and D = {o(z,y) : z,y € K} be two bounded subsets of Y. Assume that the
conditions (1)-(iv) of Theorem 3.1 hold. Then, Viy (K, F) is a connected set.

Proof. Define the set-valued mapping H : C*\{0} — 2F by
H(f) =Vi(K,F), feC"\{0}.

By Theorem 3.1, for any f € C*\{0}, V;(K, F) C E is a nonempty convex set.
It follows that for any f € C*\{0}, H(f) is a connected set. It is clear that
C*\{0} is convex, so it is a connected set.

Now we show that H(f) is upper semicontinuous on C*\{0}. Since F is
compact, by Lemma 2.2, we need only to prove that H is closed. Let {(fa, Za) :
a € I} be a net such that

{(fasxa) €I} C Graph(H) = {(f,z) € (C*\{0}) x E:x € H(f)}
and
(fomxoz) - (f,iL’o) € (C*\{O}) X E,

where f, — f means that {f,} converges to f with respect to the strong
topology B(Y*,Y) in Y*. Since z, € H(f,), a € I, one has

(3.4) fa@(®) + falp(Ta,y)) 2 fa(P(za)), Vy € K.

By assumption, ¢(K) and D = {¢(z,y) : z,y € K} are bounded subsets of Y.
Define

Py)+p(y*) == sup{ly*(uv)] : v € (K) + D}, y* € Y.
It is easy to see that Py k)4 p is a seminorm of Y. For arbitrary € > 0,

U= {y* eY*: P,/,(K)+D(y*) < 6}
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is a neighborhood of zero with respect to S(Y*,Y). Since f, — f — 0, there
exists ag € I such that f, — f € U, Va > «ap. It follows that

Pyy+p(fa = f) = sup{|(fa — f)(u)| : u € Y(K) + D} < &, whenever a > ay.
Therefore, for any y € K,

|(fa = N)((@a, )| = [fa(p(za,y) — f(o(2a, )] <&,
|(fa = )(@(xa))| = [fa((za)) = f(¥(za))] <e,

and

|fa(¢(y)) - f(w(y))l < ¢ for all @ > Qg,
because 0 € K, (0) = 0 and ¢(0,0) = 0. It follows that for any y € K,

(35) hm[fa(ap(aca,y)) - f((p(xomy))] = 01
(3.6) lim[fo (¥(za)) — f(¥(7a))] =0,
and

(3.7) lim[fa (¥(y)) — f(¥(y))] = 0.

From (3.4), we have

fa( W) + [fale(za,y)) — f(0(za,y))] = [fa(¥(za)) — f(¥(2a))]
> f(¥(xa)) — f(e(2asy)),
which implies that
lim fo (¢ () +1im[fa(o(2a,y)) = f(o(Ta,y))]
(3.8) — lim[fa (¢ (2a)) = f(¥(2a))]
2 liminf[f (¢ (zq)) — f(p(za, y))].

Noting that v is C-lower semicontinuous and ¢(+, y) is C-upper semicontinuous.
This fact together with (3.5), (3.6), (3.7) and (3.8) yields

fW(y)) = lim fo(¢(y)) +lim[fa(p(2a,y)) — f(P(za,y))]
—lim[fa((2a)) — f(¥(2a))]
> liminf[f(¢(2a)) — fle(za,y))]
> liminf f(1(z4)) — limsup f(p(zq,y))

) —
)

> [((x0)) = f(p(0,9))-
)-

It follows that g € Vy(K, F) = H(f). Therefore, H is a closed mapping, and
so H is upper semicontinuous on C*\{0}. From Theorem 3.1 in [11],

U v F

fec=\{o}
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is a connected set. Furthermore, by the assumptions and Remark 2.1(v), we
have, for any z € K, ¢(-)+p(x,-) is C-convex on K. Hence, ¥(K)+p(z, K)+C
is a convex set. By Lemma 2.3(i),

Vw(K,F)= | Vi(K,F)
fec=\{0}
is a connected set. This completes the proof. ([

Remark 3.1. If the condition (iv) in Theorem 3.1 (Theorem 3.2) is replaced
by the condition that K is a nonempty compact convex subset of X, then the
conclusion still holds.

Remark 3.2. The following example illustrates that Theorems 3.1 and 3.2,
respectively, improve Theorems 3.1 and 4.5 in [8] by removing the monotonicity
of ¢ and the C-lower semicontinuity of ¢ with respect to the second argument.

Example 3.1. Let X =R, Y =R? K =[0,1] and C =R?. Let
@(xvy) = (2x—y72x—y), w(ﬂf) = (an) for all x7yEK-

It is easy to see that the assumptions of Theorem 3.1 are satisfied. By Theorems
3.1 and 3.2, Viy (K, F) = [%,1] is a compact and connected set. However,
neither Theorem 3.1 nor Theorem 4.5 in [8] is not applicable because ¢ is not
C-monotone (i.e., for any xz,y € K, p(z,y) + ¢(y,x) € —C) on K. Indeed, let
r=1,y =1, we have

e(z,y) + ey, z) = 2z —y,2z —y) + 2y — 2,2y — )
=@+y,z+y) =(2,2)
¢ —C,
which means ¢ is not C-monotone on K.
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