• Title/Summary/Keyword: weak and strong convergence

Search Result 111, Processing Time 0.02 seconds

ON ITERATIVE APPROXIMATION OF COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS WITH APPLICATIONS

  • Kim, Jong Kyu;Qin, Xiaolong;Lim, Won Hee
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.617-630
    • /
    • 2012
  • In this paper, the problem of iterative approximation of common fixed points of asymptotically nonexpansive is investigated in the framework of Banach spaces. Weak convergence theorems are established. A necessary and sufficient condition for strong convergence is also discussed. As an application of main results, a variational inequality is investigated.

AFFINE INVARIANT LOCAL CONVERGENCE THEOREMS FOR INEXACT NEWTON-LIKE METHODS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.393-406
    • /
    • 1999
  • Affine invariant sufficient conditions are given for two local convergence theorems involving inexact Newton-like methods. The first uses conditions on the first Frechet-derivative whereas the second theorem employs hypotheses on the second. Radius of con-vergence as well as rate of convergence results are derived. Results involving superlinear convergence and known to be true for inexact Newton methods are extended here. Moreover we show that under hypotheses on the second Frechet-derivation our radius of convergence results are derived. Results involving superlinear convergence and known to be true or inexact Newton methods are extended here. Moreover we show that under hypotheses on the second Frechet-derivative our radius of conver-gence is larger than the corresponding one in [10]. This allows a wider choice for the initial guess. A numerical example is also pro-vided to show that our radius of convergence is larger then the one in [10].

LOCAL CONVERGENCE THEOREMS FOR NEWTON METHODS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.345-360
    • /
    • 2001
  • Affine invariant sufficient conditions are given for two local convergence theorems involving inexact Newton-like methods. The first uses conditions on the first Frechet-derivative whereas the second theorem employs hypotheses on the mth(m≥2 an integer). Radius of convergence as well as rate of convergence results are derived. Results involving superlinear convergence and known to be true for inexact Newton methods are extended here. Moreover, we show that under hypotheses on the mth Frechet-derivative our radius of convergence can sometimes be larger than the corresponding one in [10]. This allows a wider choice for the initial guess. A numerical example is also provided to show that our radius of convergence is larger than the one in [10].

CONVERGENCE OF VISCOSITY APPROXIMATIONS TO FIXED POINTS OF NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.81-95
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T\;:\;C\;{\rightarrow}\;E$ a nonexpansive mapping satisfying the weak inwardness condition. Assume that every weakly compact convex subset of E has the fixed point property. For $f\;:\;C\;{\rightarrow}\;C$ a contraction and $t\;{\in}\;(0,\;1)$, let $x_t$ be a unique fixed point of a contraction $T_t\;:\;C\;{\rightarrow}\;E$, defined by $T_tx\;=\;tf(x)\;+\;(1\;-\;t)Tx$, $x\;{\in}\;C$. It is proved that if {$x_t$} is bounded, then $x_t$ converges to a fixed point of T, which is the unique solution of certain variational inequality. Moreover, the strong convergence of other implicit and explicit iterative schemes involving the sunny nonexpansive retraction is also given in a reflexive and strictly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm.

  • PDF

AN ITERATIVE SCHEME FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS OF ASYMPTOTICALLY k-STRICT PSEUDO-CONTRACTIVE MAPPINGS

  • Wang, Ziming;Su, Yongfu
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.69-82
    • /
    • 2010
  • In this paper, we propose an iterative scheme for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of an asymptotically k-strict pseudo-contractive mapping in the setting of real Hilbert spaces. We establish some weak and strong convergence theorems of the sequences generated by our proposed scheme. Our results are more general than the known results which are given by many authors. In particular, necessary and sufficient conditions for strong convergence of our iterative scheme are obtained.

INERTIAL PICARD NORMAL S-ITERATION PROCESS

  • Dashputre, Samir;Padmavati, Padmavati;Sakure, Kavita
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.995-1009
    • /
    • 2021
  • Many iterative algorithms like that Picard, Mann, Ishikawa and S-iteration are very useful to elucidate the fixed point problems of a nonlinear operators in various topological spaces. The recent trend for elucidate the fixed point via inertial iterative algorithm, in which next iterative depends on more than one previous terms. The purpose of the paper is to establish convergence theorems of new inertial Picard normal S-iteration algorithm for nonexpansive mapping in Hilbert spaces. The comparison of convergence of InerNSP and InerPNSP is done with InerSP (introduced by Phon-on et al. [25]) and MSP (introduced by Suparatulatorn et al. [27]) via numerical example.

APPROXIMATING COMMON FIXED POINTS OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Kim, Tae-Hwa
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.859-866
    • /
    • 1998
  • In this paper we shall prove weak(or strong) convergence of the iterates ${\chi_n} \;and \;{y_n}$ defined by $\chi-{n+1}= \alpha_nTy_n+(1-\alpha_n)S\chi_n , y_n=\beta_nT\chi_n+(1-\beta_n)\chi_n$ for all n$\geq$1, where $\alpha_n$ and $\beta_n$ satisfy 0$\leq\alpha_n,\beta_n\leq$b<1.

WEAK AND STRONG CONVERGENCE OF SUBGRADIENT EXTRAGRADIENT METHODS FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

  • Hieu, Dang Van
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.879-893
    • /
    • 2016
  • In this paper, we introduce three subgradient extragradient algorithms for solving pseudomonotone equilibrium problems. The paper originates from the subgradient extragradient algorithm for variational inequalities and the extragradient method for pseudomonotone equilibrium problems in which we have to solve two optimization programs onto feasible set. The main idea of the proposed algorithms is that at every iterative step, we have replaced the second optimization program by that one on a specific half-space which can be performed more easily. The weakly and strongly convergent theorems are established under widely used assumptions for bifunctions.

LIMIT THEOREMS FOR MARKOV PROCESSES GENERATED BY ITERATIONS OF RANDOM MAPS

  • Lee, Oe-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.983-992
    • /
    • 1996
  • Let p(x, dy) be a transition probability function on $(S, \rho)$, where S is a complete separable metric space. Then a Markov process $X_n$ which has p(x, dy) as its transition probability may be generated by random iterations of the form $X_{n+1} = f(X_n, \varepsilon_{n+1})$, where $\varepsilon_n$ is a sequence of independent and identically distributed random variables (See, e.g., Kifer(1986), Bhattacharya and Waymire(1990)).

  • PDF