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ON ITERATIVE APPROXIMATION OF COMMON FIXED

POINTS OF ASYMPTOTICALLY NONEXPANSIVE

MAPPINGS WITH APPLICATIONS

Jong Kyu Kim, Xiaolong Qin, and Won Hee Lim

Abstract. In this paper, the problem of iterative approximation of com-

mon fixed points of asymptotically nonexpansive is investigated in the
framework of Banach spaces. Weak convergence theorems are estab-

lished. A necessary and sufficient condition for strong convergence is

also discussed. As an application of main results, a variational inequality
is investigated.

1. Introduction

Recently, iterative algorithms for computing common fixed points of nonlin-
ear mappings has been considered by many authors ([1]–[6]).

From the method of generating iterative sequences, we can divide iterative
algorithms into explicit algorithms and implicit algorithms. Recently, both
explicit Mann-type iterative algorithms and implicit Mann-type iterative algo-
rithms have been extensively studied for approximating common fixed points
of nonlinear mappings ([7]–[16]).

In this paper, we consider the problem of approximating common fixed
points of asymptotically nonexpansive mappings based on a general implicit
iterative algorithm which includes an explicit iterative process as a special
case. As an application of main results, a variational inequality is investigated
in a uniformly convex and q-uniformly smooth Banach space.

2. Preliminaries

Let E be a real Banach space and E∗ the dual space of E. Let Jq, where

q > 1, denote the generalized duality mapping from E into 2E
∗

give by

Jq(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖q, ‖f∗‖ = ‖x‖q−1}, ∀x ∈ E,
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where 〈·, ·〉 denotes the generalized duality pairing. In particular, J2 is called
the normalized duality mapping which is usually denoted by J . It is well known
(see, for example, [17]) that Jq(x) = ‖x‖q−2J(x) if x 6= 0.

Let UE = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be strictly convex
if for all x, y ∈ E which are linearly independent, ‖x + y‖ < ‖x‖ + ‖y‖. This
condition is equivalent to the following:

‖x‖ = ‖y‖ = 1, and x 6= y =⇒
∥∥∥x+ y

2

∥∥∥ < 1.

E is said to be uniformly convex if for any two sequences {xn} and {yn} in E
such that ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖xn + yn‖ = 2, then limn→∞ ‖xn −
yn‖ = 0 holds. It is known that a uniformly convex Banach space is reflexive
and strictly convex.

A Banach space E is said to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for all x, y ∈ UE . It is said to be uniformly smooth if the limit is attained
uniformly for all x, y ∈ UE .

The modulus of smoothness of E is the function ρE : [0,∞)→ [0,∞) defined
by

ρE(τ) = sup
{1

2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ τ

}
, ∀τ ≥ 0.

The Banach space E is uniformly smooth if and only if limτ→∞
ρE(τ)
τ = 0.

A Banach space E is said to be q-uniformly smooth if there exists a constant
c > 0 such that ρE(τ) ≤ cτ q. It is shown in [17] that there is no Banach space
which is q-uniformly smooth with q > 2. Hilbert spaces, Lp (or lp) spaces and
Sobolev space W p

m, where p ≥ 2, are 2-uniformly smooth. Typical examples
of both uniformly convex and uniformly smooth Banach spaces are Lp, where
p > 1. More precisely, Lp is min{p, 2}-uniformly smooth for every p > 1.
E is said to satisfy Opial’s condition (see [18]) if, for each sequence {xn} in

E, xn ⇀ x, where ⇀ denotes weak convergence, implies that

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ E (y 6= x).

Let C be a nonempty subset of E and T : C → C be a mapping. In this
paper, the symbol F (T ) stands for the fixed point set of T. T is said to be
nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.
T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂
[1,∞) with kn → 1 as n→∞ such that

‖Tnx− Tny‖ ≤ kn‖x− y‖, ∀x, y ∈ C, ∀n ≥ 1.

The class of asymptotically nonexpansive mappings was introduced by Goebel
and Kirk [19] as a generalization of the class of nonexpansive mappings. They
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proved that if C is a nonempty, closed, convex, and bounded subset of a real
uniformly convex Banach space, then every asymptotically nonexpansive self
mapping has a fixed point (see [19]).

In order to prove our main results, we still need the following lemmas.

Lemma 2.1. ([20]) Let C be a nonempty, closed, and convex subset of a uni-
formly convex Banach space E. Let T : C → C be an asymptotically non-
expansive mapping. Then I − T is demiclosed at zero, that is, xn ⇀ x and
xn − Txn → 0 imply that x = Tx.

Lemma 2.2. ([21]) Let {an}, {bn} and {cn} be nonnegative sequences satisfy-
ing the following condition:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0,

where n0 is some nonnegative integer,
∑∞
n=1 bn <∞ and

∑∞
n=1 cn <∞. Then

the limit limn→∞ an exists.

Lemma 2.3. ([15]) Let E be a uniformly convex Banach space, r > 0 a positive
number and Br(0) a closed ball of E with the center at zero. Then there exits
a continuous, strictly increasing and convex function g : [0,∞) → [0,∞) with
g(0) = 0 such that

‖
m∑
s=1

(αsxs)‖2 ≤
m∑
s=1

(αs‖xs‖2)− αiαjg(‖xi − xj‖), ∀i, j ∈ {1, 2, . . . , r},

where x1, x2, . . . , xm ∈ Br(0) and α1, α2, . . . , αm ∈ (0, 1) such that
∑m
i=1 αi =

1.

3. Main results

Let C be a nonempty, closed and convex subset of a Banach space E. Let
T : C → C be an asymptotically nonexpansive mapping with the sequence
{kn}. For every u ∈ C and tn ∈ (0, 1), define a mapping Tn : C → C by

Tnx = tnu+ (1− tn)Tnx, ∀x ∈ C, ∀n ≥ 1.

If (1 − tn)kn < 1, for every n ≥ 1, then Tn is a contraction. Hence, by the
Banach contraction principal, there exists a unique fixed point of Tn, for every
n ≥ 1.

Let x0 be chosen and r ≥ 1 a positive integer. Let {αn}, {βn,1}, {βn,2}, . . .,
{βn,r}, {γn,1}, {γn,2}, . . . , {γn,r} be real sequences in (0, 1) such that

αn +

r∑
m=1

βn,m +

r∑
m=1

γn,m = 1.

Let Sm, Tm : C → C be asymptotically nonexpansive mappings, for every
m ∈ {1, 2, . . . , r}.
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Find x1 by solving the following equation

x1 = α1x0 +

r∑
m=1

β1,mSmx0 +

r∑
m=1

γ1,mTmx1.

Find x2 by solving the following equation

x2 = α2x1 +

r∑
m=1

β2,mS
2
mx1 +

r∑
m=1

γ2,mT
2
mx2.

· · · .
Find xn by solving the following equation

xn = αnxn−1 +

r∑
m=1

βn,mS
n
mxn−1 +

r∑
m=1

γn,mT
n
mxn.

· · ·
In view of the above, we have the following implicit iterative algorithm

x0 ∈ C, xn = αnxn−1 +

r∑
m=1

βn,mS
n
mxn−1 +

r∑
m=1

γn,mT
n
mxn, ∀n ≥ 1. (3.1)

If Sm = I, where I is the identity mapping, for every m ∈ {1, 2, . . . , r}, then
(3.1) is reduced the following.

x0 ∈ C, xn = (αn +

r∑
m=1

βn,m)xn−1 +

r∑
m=1

γn,mT
n
mxn, ∀n ≥ 1. (3.2)

If Tm = I, where I stands for the identity mapping, for everym ∈ {1, 2, . . . , r},
then (3.1) is reduced the following.

x0 ∈ C, xn =
αn

1−
∑r
m=1 γn,m

xn−1 +

∑r
m=1 βn,m

1−
∑r
m=1 γn,m

Snmxn−1, ∀n ≥ 1. (3.3)

Now, we neeed the following proposition for our main results.

Proposition 3.1. Let C be a nonempty, closed and convex subset of a uni-
formly convex Banach space E. Let Sm, Tm : C → C be asymptotically
nonexpansive mappings with the sequence {sn,m} and {tn,m}, for every m ∈
{1, 2, . . . , r}, where r ≥ 1. Assume that F = ∩rm=1F (Sm)

⋂
∩rm=1F (Tm) is

nonempty. Let tn = max{tn,m : 1 ≤ m ≤ r} and sn = max{sn,m : 1 ≤ m ≤ r}.
Assume that

∑∞
n=1(kn − 1) < ∞, where kn = max{sn, tn : 1 ≤ m ≤ r}.

Let {xn}∞n=0 be a sequence generated by (3.1), where {αn}, {βn,1}, {βn,2}, . . . ,
{βn,r}, {γn,1}, {γn,2}, . . ., {γn,r} are real number sequences in (0, 1) such that
αn +

∑r
m=1 βn,m +

∑r
m=1 γn,m = 1. Assume that the control sequences {αn},

{βn,1}, {βn,2}, . . . , {βn,r}, {γn,1}, {γn,2}, . . ., {γn,r} are satisfied

(a) lim infn→∞ αnβn,m > 0, and lim infn→∞ αnγn,m > 0, ∀m ∈ {1, 2, . . . , r};
(b)

∑r
m=1 γn,mtn < 1.
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Then

lim
n→∞

‖xn − Smxn‖ = lim
n→∞

‖xn − Tmxn‖ = 0, ∀m ∈ {1, 2, . . . , r}.

Proof. By the condition (b), we see that the sequence {xn} generated by iter-
ative process (3.1) is well defined. For p ∈ F , we see that

‖xn − p‖ ≤ αn‖xn−1 − p‖+

r∑
m=1

βn,m‖Snmxn−1 − p‖+

r∑
m=1

γn,m‖Tnmxn − p‖

≤ (αn +

r∑
m=1

βn,mkn)‖xn−1 − p‖+

r∑
m=1

γn,mkn‖xn − p‖.

In view of lim infn→∞ αnβn,m > 0 and αn +
∑r
m=1 βn,m +

∑r
m=1 γn,m = 1,

we see that there exists some positive integer n1 and a real number a, where
a ∈ (0, 1), such that

r∑
m=1

γn,m ≤ a, ∀n ≥ n1.

Since
∑∞
n=1(kn − 1) < ∞, there exists some positive integer n2 such that

kn ≤ 1 + 1−a
2a , for all n ≥ n2. It follows that

r∑
m=1

γn,mkn ≤ b < 1, ∀n ≥ n3,

where b = a(1 + 1−a
2a ) and n3 = max{n1, n2}. It follows that

‖xn − p‖ ≤
αn +

∑r
m=1 βn,mkn

1−
∑r
m=1 γn,mkn

‖xn−1 − p‖

≤
(
1 +

αn +
∑r
m=1 βn,mkn +

∑r
m=1 γn,mkn − 1

1−
∑r
m=1 γn,mkn

)
‖xn−1 − p‖

≤
(
1 +

kn − 1

1− b
)
‖xn−1 − p‖.

(3.4)

It follows from Lemma 2.2 that limn→∞ ‖xn − p‖ exists. This implies that the
sequence {xn} is bounded.

On the other hand, we find from Lemma 2.3 that

‖xn − p‖2 ≤αn‖xn−1 − p‖2 +

r∑
m=1

βn,m‖Snmxn−1 − p‖2 +

r∑
m=1

γn,m‖Tnmxn − p‖2

− αnβn,mg(‖xn−1 − Snmxn−1‖)

≤(αn +

r∑
m=1

βn,mkn)‖xn−1 − p‖2 +

r∑
m=1

γn,mkn‖xn − p‖2

− αnβn,mg(‖xn−1 − Snmxn−1‖), ∀m ∈ {1, 2, . . . , N}.
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This implies that

αnβn,mg(‖xn−1 − Snmxn−1‖)

≤(αnkn +

r∑
m=1

βn,mkn)‖xn−1 − p‖2 +

r∑
m=1

γn,mkn‖xn − p‖2

− kn‖xn − p‖2 + (kn − 1)‖xn − p‖2

≤(αnkn +

r∑
m=1

βn,mkn)(‖xn−1 − p‖2 − ‖xn − p‖2)

+ (kn − 1)‖xn − p‖2, ∀m ∈ {1, 2, . . . , r}.

Since limn→∞ ‖xn − p‖ exists, from the condition (a) we have that

lim
n→∞

g(‖xn−1 − Snmxn−1‖) = 0,

for every m ∈ {1, 2, . . . , r}. It follows that

lim
n→∞

‖xn−1 − Snmxn−1‖ = 0, ∀m ∈ {1, 2, . . . , r}. (3.5)

From the Lemma 2.3, we obthain that

‖xn − p‖2 ≤αn‖xn−1 − p‖2 +

r∑
m=1

βn,m‖Snmxn−1 − p‖2 +

r∑
m=1

γn,m‖Tnmxn − p‖2

− αnγn,mg(‖xn−1 − Tnmxn‖)

≤(αn +

r∑
m=1

βn,mkn)‖xn−1 − p‖2 +

r∑
m=1

γn,mkn‖xn − p‖2

− αnγn,mg(‖xn−1 − Tnmxn‖), ∀m ∈ {1, 2, . . . , r}.

This implies that

αnγn,mg(‖xn−1 − Tnmxn‖)

≤(αnkn +

r∑
m=1

βn,mkn)‖xn−1 − p‖2 +

r∑
m=1

γn,mkn‖xn − p‖2

− kn‖xn − p‖2 + (kn − 1)‖xn − p‖2

≤(αnkn +

r∑
m=1

βn,mkn)(‖xn−1 − p‖2 − ‖xn − p‖2)

+ (kn − 1)‖xn − p‖2, ∀m ∈ {1, 2, . . . , N}.

Since limn→∞ ‖xn − p‖ exists, from the condition (a) we have that

lim
n→∞

g(‖xn−1 − Tnmxn‖) = 0,

for every m ∈ {1, 2, . . . , r}. It follows that

lim
n→∞

‖xn−1 − Tnmxn‖ = 0, ∀m ∈ {1, 2, . . . , r}. (3.6)
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Notice that

‖xn − xn−1‖ =

r∑
m=1

βn,m‖Snmxn−1 − xn−1‖+

r∑
m=1

γn,m‖Tnmxn − xn−1‖.

From the (3.5) and (3.6), we find that

lim
n→∞

‖xn−1 − xn‖ = 0. (3.7)

Notice that

‖xn − Tnmxn‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − Tnmxn‖, ∀m ∈ {1, 2, . . . , r}.
This implies from (3.6), and (3.7) that

lim
n→∞

‖xn − Tnmxn‖ = 0, ∀m ∈ {1, 2, . . . , r}. (3.8)

On the other hand, we have

‖xn − Snmxn‖ ≤‖xn − xn−1‖+ ‖xn−1 − Snmxn−1‖
+ ‖Snmxn−1 − Snmxn‖, ∀m ∈ {1, 2, . . . , r}.

Since Sm is Lipschitz for every m ∈ {1, 2, . . . , r}, from (3.5) and (3.7) we know
that

lim
n→∞

‖xn − Snmxn‖ = 0, ∀m ∈ {1, 2, . . . , r}. (3.9)

Notice that

‖xn − Smxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Sn+1
m xn+1‖

+ ‖Sn+1
m xn+1 − Sn+1

m xn‖+ ‖Sn+1
m xn − Smxn‖

≤ (1 +M)‖xn − xn+1‖+ ‖xn+1 − Sn+1
m xn+1‖

+M‖Snmxn − xn‖,

where M = supn≥1{kn}. It follows from (3.7) and (3.9) that

lim
n→∞

‖xn − Smxn‖ = 0, ∀m ∈ {1, 2, . . . , r}. (3.10)

On the other hand, we have

‖xn − Tmxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1
m xn+1‖

+ ‖Tn+1
m xn+1 − Tn+1

m xn‖+ ‖Tn+1
m xn − Tmxn‖

≤ (1 +M)‖xn − xn+1‖+ ‖xn+1 − Tn+1
m xn+1‖

+M‖Tnmxn − xn‖.

It follows from (3.7) and (3.8) that

lim
n→∞

‖xn − Tmxn‖ = 0, ∀m ∈ {1, 2, . . . , r}. (3.11)

This completes the proof. �

Now, we give the following weak convergence theorems with Opial’s condi-
tion.



624 JONG KYU KIM, XIAOLONG QIN, AND WON HEE LIM

Theorem 3.2. Let C be a nonempty, closed, and convex subset of a uni-
formly convex Banach space E which has Opial’s condition. Let Sm, Tm :
C → C be asymptotically nonexpansive mapping with the sequence {sn,m}
and {tn,m}, for every m ∈ {1, 2, . . . , r}, where r ≥ 1. Assume that F =
∩rm=1F (Sm)

⋂
∩rm=1F (Tm) is nonempty. Let tn = max{tn,m : 1 ≤ m ≤ r}

and sn = max{sn,m : 1 ≤ m ≤ r}. Assume that
∑∞
n=1(kn − 1) < ∞, where

kn = max{sn, tn : 1 ≤ m ≤ r}. Let {xn} be a sequence generated by (3.1),
where {αn}, {βn,1}, {βn,2}, . . . , {βn,r}, {γn,1}, {γn,2}, . . . , {γn,r} are real
number sequences in (0, 1) such that αn +

∑r
m=1 βn,m +

∑r
m=1 γn,m = 1. As-

sume that restrictions (a) and (b) as in Proposition 3.1 are satisfied. Then
{xn} converges weakly to some point in F .

Proof. Since {xn} is bounded, we find that there exists a subsequence {xni} ⊂
{xn} such that {xni} converges weakly to a point x̄ ∈ C. It follows from
Lemma 2.1 and Proposition 3.1 that x̄ ∈ F . Assume that there exists another
subsequence {xnj

} ⊂ {xn} such that {xnj
} converges weakly to a point x̂ ∈ C.

It follows from Lemma 2.1 that x̂ ∈ F . If x̄ 6= x̂, then

lim
n→∞

‖xn − x̄‖ = lim inf
i→∞

‖xni
− x̄‖ < lim inf

i→∞
‖xni

− x̂‖

= lim inf
j→∞

‖xnj
− x̂‖ < lim inf

j→∞
‖xnj

− x̄‖

= lim
n→∞

‖xn − x̄‖.

This is a contradiction. Hence x̄ = x̂. Hence every subsequence converges to
same point x̄. This completes the proof. �

If r = 1, then Theorem 3.2 is reduced to the following.

Corollary 3.3. Let C be a nonempty, closed and convex subset of a uniformly
convex Banach space E which has Opial’s condition. Let S, T : C → C be
an asymptotically nonexpansive mappings with the sequences {sn} and {tn}.
Assume that F = F (S)

⋂
F (T ) is nonempty. Assume that

∑∞
n=1(kn−1) <∞,

where kn = max{sn, tn : 1 ≤ m ≤ r}. Let {xn} be a sequence generated by the
following

x0 ∈ C, xn = αnxn−1 + βnS
nxn−1 + γnT

nxn, ∀n ≥ 1,

where {αn}, {βn} and {γn} are real number sequences in (0, 1) such that αn +
βn + γn = 1. Assume that the following restrictions imposed on the control
sequences {αn}, {βn} and {γn} are satisfied

(a) lim infn→∞ αnβn > 0 and lim infn→∞ αnγn > 0;
(b) γntn < 1.

Then {xn} converges weakly to some point in F .

If Sm = I, then Theorem 3.2 is reduced to the following.

Corollary 3.4. Let C be a nonempty, closed, and convex subset of a uni-
formly convex Banach space E which has Opial’s condition. Let Tm : C → C
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be an asymptotically nonexpansive mapping with the sequence {tn,m}, for every
m ∈ {1, 2, . . . , r}, where r ≥ 1. Assume that F = ∩rm=1F (Tm) is nonempty.
Assume that

∑∞
n=1(tn − 1) < ∞, where tn = max{tn,m : 1 ≤ m ≤ r}.

Let {xn} be a sequence generated by (3.2), where {αn}, {βn,1}, {βn,2}, . . . ,
{βn,r}, {γn,1}, {γn,2}, . . . , {γn,r} are real number sequences in (0, 1) such that
αn +

∑r
m=1 βn,m +

∑r
m=1 γn,m = 1. Assume that restrictions (a) and (b) in

Proposition 3.1 are satisfied. Then {xn} converges weakly to some point in F .

If Tm = I, then Theorem 3.2 is reduced to the following.

Corollary 3.5. Let C be a nonempty, closed and convex subset of a uni-
formly convex Banach space E which has Opial’s condition. Let Sm : C → C
be an asymptotically nonexpansive mapping with the sequence {sn,m}, for ev-
ery m ∈ {1, 2, . . . , r}, where r ≥ 1 with F = ∩rm=1F (Sm) is nonempty.
Assume that

∑∞
n=1(sn − 1) < ∞, where sn = max{sn,m : 1 ≤ m ≤ r}.

Let {xn} be a sequence generated by (3.3), where {αn}, {βn,1}, {βn,2}, . . . ,
{βn,r}, {γn,1}, {γn,2}, . . . , {γn,r} are real number sequences in (0, 1) such that
αn +

∑r
m=1 βn,m +

∑r
m=1 γn,m = 1. Assume that the condition (a) in Propo-

sition 3.1 are satisfied. Then {xn} converges weakly to some point in F .

Next, we give a necessary and sufficient condition for the strong convergence
of (3.1).

Theorem 3.6. Let C be a nonempty, closed and convex subset of a uniformly
convex Banach space E. Let Sm, Tm : C → C be asymptotically nonexpansive
mappings with the sequences {sn,m} and {tn,m}, for every m ∈ {1, 2, . . . , r},
where r ≥ 1. Assume that F = ∩rm=1F (Sm)

⋂
∩rm=1F (Tm) is nonempty.

Let tn = max{tn,m : 1 ≤ m ≤ r} and sn = max{sn,m : 1 ≤ m ≤ r}.
Assume that

∑∞
n=1(kn − 1) < ∞, where kn = max{sn, tn : 1 ≤ m ≤ r}.

Let {xn} be a sequence generated by (3.1), where {αn}, {βn,1}, {βn,2}, . . . ,
{βn,r}, {γn,1}, {γn,2}, . . . , {γn,r} are real number sequences in (0, 1) such that
αn +

∑r
m=1 βn,m +

∑r
m=1 γn,m = 1. Assume that the conditions (a) and (b)

in Proposition 3.1 are satisfied. Then {xn} converges strongly to some point in
F if and only if

lim inf
n→∞

dist(xn,F ) = 0.

Proof. The necessity of the proof is obvious. We only show the sufficiency
of the proof. Assume that lim infn→∞ dist(xn,F ) = 0. In view of (3.4), we
know from Lemma 2.2 that limn→∞ dist(xn,F ) exists. From the hypothesis,
it follows that limn→∞ dist(xn,F ) = 0.

Next, we show that the sequence {xn} is Cauchy. For positive integers
m,n, where m > n, we see from (3.4) that ‖xn − p‖ ≤ ehn‖xn−1 − p‖, where
hn = kn−1

1−a . This in turn implies that

‖xm − p‖ ≤ B‖xn − p‖,
where B = e

∑∞
n=1 hn . It follows that

‖xn − xm‖ ≤ ‖xn − p‖+ ‖xm − p‖ ≤ (1 +B)‖xn − p‖.
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Taking the infimum over all p ∈ F , we find that {xn} is a Cauchy sequence in
C. Assume that {xn} converges strongly to some q̄ ∈ C. Since Tm and Sm are
Lipschitz for each m ∈ {1, 2, . . . , N}, we know that F is closed. This in turn
implies that q̄ ∈ F . This completes the proof. �

If Sm = I, then Theorem 3.6 is reduced to the following.

Corollary 3.7. Let C be a nonempty, closed and convex subset of a uniformly
convex Banach space E. Let Tm : C → C be an asymptotically nonexpansive
mapping with the sequence {tn,m}, for every m ∈ {1, 2, . . . , r}, where r ≥ 1.
Assume that F = ∩rm=1F (Tm) is nonempty. Assume that

∑∞
n=1(tn − 1) <∞,

where tn = max{tn,m : 1 ≤ m ≤ r}. Let {xn} be a sequence generated by (3.2),
where {αn}, {βn,1}, {βn,2}, . . . , {βn,r}, {γn,1}, {γn,2}, . . . , {γn,r} are real num-
ber sequences in (0, 1) such that αn +

∑r
m=1 βn,m +

∑r
m=1 γn,m = 1. Assume

that the conditions (a) and (b) in Proposition 3.1 are satisfied. Then {xn} con-
verges strongly to some point in F if and only if lim infn→∞ dist(xn,F ) = 0.

If Tm = I, then Theorem 3.6 is reduced to the following.

Corollary 3.8. Let C be a nonempty, closed and convex subset of a uniformly
convex Banach space E. Let Sm : C → C be an asymptotically nonexpansive
mapping with the sequence {sn,m}, for every m ∈ {1, 2, . . . , r}, where r ≥
1 is some positive integer. Assume that

∑∞
n=1(sn − 1) < ∞, where sn =

max{sn,m : 1 ≤ m ≤ r}. Let {xn} be a sequence generated by (3.2), where
{αn}, {βn,1}, {βn,2}, . . . , {βn,r}, {γn,1}, {γn,2}, . . . , {γn,r} are real number
sequences in (0, 1) such that αn +

∑r
m=1 βn,m +

∑r
m=1 γn,m = 1. Assume that

the condition (a) in Proposition 3.1 are satisfied. Then {xn} converges strongly
to some point in F if and only if lim infn→∞ dist(xn,F ) = 0.

4. Applications

Finally, we consider the problem of approximation solutions of variational
inequalities as an application of main results.

Let C be a nonempty, closed and convex subset of a smooth Banach space
E and A : C → E an operator. Find an x ∈ C such that

〈Ax, J(y − x)〉 ≥ 0, ∀y ∈ C. (4.1)

In what follows, the symbol V I(C,A) stands for the solution set of the above
inequality (4.1).
A is said to be accretive if

〈Ax−Ay, J(x− y)〉 ≥ 0, ∀x, y ∈ C.

A is said to be α-inverse-strongly accretive if there exists a positive constant
α such that

〈Ax−Ay, J(x− y)〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.
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Let K be a nonempty subset of C and let Q : C → K be a mapping. Q is
said to be sunny if

Qx = Q
(
Qx+ t(x−Qx)

)
whenever Qx+ t(x−Qx) ∈ C for x ∈ C and t ≥ 0. Q is said to be retraction
if Q2 = Q. Q is said to be a sunny nonexpansive retraction if Q is sunny
nonexpansive and a retraction onto K. A subset K of C is said to be a sunny
nonexpansive retract of C if there exists a sunny nonexpansive retraction from
C onto K.

The following results describe a characterization of sunny nonexpansive re-
tractions on a smooth Banach space; see [22] and [23] for more details.

Let C be a nonempty subset of a smooth Banach space E. Let QC be a sunny
nonexpansive retraction from E onto C. Then the following are equivalent:

(a) QC is sunny and nonexpansive;
(b) 〈x−Qx, J(Qx− y)〉, ∀x ∈ C, y ∈ K.

The following lemma can be found in [17] and [24].

Lemma 4.1. Let E be a q-uniformly smooth Banach space with q-uniformly
smoothness constant Cq > 0. Then the following holds

‖x+ y‖q ≤ ‖x‖q + q〈y, Jqx〉+ Cq‖y‖q, ∀x, y ∈ E.

Now, we are in a position to give the main results of this section.

Theorem 4.2. Let E be a uniformly convex and q-uniformly smooth Banach
space with q-uniformly smoothness constant Cq > 0 and C be a nonempty,
closed and convex subset of E. Let QC be a sunny nonexpansive retraction
from E onto C. Let Am : C → E be a am-inverse-strongly accretive opera-
tor and Bm : C → E a bm-inverse-strongly accretive operator, for every m ∈
{1, 2, . . . , r}, where r ≥ 1. Assume that F = ∩rm=1V I(C,Am)

⋂
∩rm=1V I(C,Bm)

is nonempty. Let {xn} be a sequence generated by the following: x0 ∈ C,

xn =αnxn−1 +

r∑
m=1

βn,mQC(xn−1 − µmAmxn−1)

+

r∑
m=1

γn,mQC(xn − νmBmxn), ∀n ≥ 1,

(4.2)

where {αn}, {βn,1}, {βn,2}, · · · , {βn,r}, {γn,1}, {γn,2}, · · · , {γn,r} are real
number sequences in (0, 1) such that αn +

∑r
m=1 βn,m +

∑r
m=1 γn,m = 1 and

µ1, µ2, . . . , µr, ν1, ν2, . . . , νr are real numbers such that µm ≤
(
qam
Cq

) 1
q and

νm ≤
(
qbm
Cq

) 1
q , for every m ∈ {1, 2, . . . , r}. Assume that the condition (a) in

Proposition 3.1 are satisfied. If E has Opial’s condition, then {xn} converges
weakly to some point in F .

Proof. From Lemma 2.7 of Aoyama, Iiduka and Takahashi [24], we find, for
every m ∈ {1, 2, · · · , r}, that V I(C,Am) = F (QC(I − λA)) and V I(C,Am) =
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F (QC(I − λB)) for all λ > 0. Notice that QC(I − µmAm) and QC(I − νmBm)
are nonexpansive. Indeed, we find from Lemma 4.1 that

‖QC(I − µmAm)x−QC(I − µmAm)y‖q

≤ ‖(x− y)− µm(Amx−Amy)‖q

≤ ‖x− y‖q − qµm〈Amx−Amy, Jq(x− y)〉+ Cqµ
q
m‖Amx−Amy‖q

≤ ‖x− y‖q − qamµm‖Amx−Amy‖q + Cqµ
q
m‖Amx−Amy‖q

= ‖x− y‖q − (qamµm − Cqµqm)‖Amx−Amy‖q

= ‖x− y‖q, ∀x, y ∈ C.

This proves that QC(I − µmA) is nonexpansive, so is QC(I − µmB). Since
nonexpansive mappings are asymptotically nonexpansive mappings with the
sequence {1}, we can easily conclude from Theorem 3.2 the desired conclusion.
This completes the proof. �

Theorem 4.3. Let E be a uniformly convex and q-uniformly smooth Banach
space with q-uniformly smoothness constant Cq > 0 and C a nonempty, closed
and convex subset of E. Let QC be a sunny nonexpansive retraction from E
onto C. Let Am : C → E be an am-inverse-strongly accretive operator and Bm :
C → E a bm-inverse-strongly accretive operator, for every m ∈ {1, 2, . . . , r},
where r ≥ 1. Assume that F = ∩rm=1V I(C,Am)

⋂
∩rm=1V I(C,Bm) is nonempty

and Cq ≤ λq, where λ = min{amµm, bmνm : 1 ≤ m ≤ r}. Let {xn} be a se-
quence generated by the following: x0 ∈ C,

xn =αnxn−1 +

r∑
m=1

βn,mQC(xn−1 − µmAmxn−1)

+

r∑
m=1

γn,mQC(xn − νmBmxn), ∀n ≥ 1,

where {αn}, {βn,1}, {βn,2}, · · · , {βn,r}, {γn,1}, {γn,2},· · · , {γn,r} are real
number sequences in (0, 1) such that αn +

∑r
m=1 βn,m +

∑r
m=1 γn,m = 1 and

µ1, µ2, . . . , µr, ν1, ν2, . . . , νr are real numbers such that µm ≤
(
qam
Cq

) 1
q and

νm ≤
(
qbm
Cq

) 1
q , for every m ∈ {1, 2, · · · , r}. Assume that the condition (a) in

Proposition 3.1 are satisfied. Then {xn} converges strongly to some point in
F if and only if lim infn→∞ dist(xn,F ) = 0.

Proof. Notice that QC(I − µmAm), and QC(I − νmBm) are nonexpansive.
We can immediately conclude from Theorem 3.6 the desired conclusion. This
completes the proof. �
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