ON ITERATIVE APPROXIMATION OF COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS WITH APPLICATIONS

Jong Kyu Kim, Xiaolong Qin, and Won Hee Lim

Abstract

In this paper, the problem of iterative approximation of common fixed points of asymptotically nonexpansive is investigated in the framework of Banach spaces. Weak convergence theorems are established. A necessary and sufficient condition for strong convergence is also discussed. As an application of main results, a variational inequality is investigated.

1. Introduction

Recently, iterative algorithms for computing common fixed points of nonlinear mappings has been considered by many authors ([1]-[6]).

From the method of generating iterative sequences, we can divide iterative algorithms into explicit algorithms and implicit algorithms. Recently, both explicit Mann-type iterative algorithms and implicit Mann-type iterative algorithms have been extensively studied for approximating common fixed points of nonlinear mappings ([7]-[16]).

In this paper, we consider the problem of approximating common fixed points of asymptotically nonexpansive mappings based on a general implicit iterative algorithm which includes an explicit iterative process as a special case. As an application of main results, a variational inequality is investigated in a uniformly convex and q-uniformly smooth Banach space.

2. Preliminaries

Let E be a real Banach space and E^{*} the dual space of E. Let J_{q}, where $q>1$, denote the generalized duality mapping from E into $2^{E^{*}}$ give by

$$
J_{q}(x)=\left\{f^{*} \in E^{*}:\left\langle x, f^{*}\right\rangle=\|x\|^{q},\left\|f^{*}\right\|=\|x\|^{q-1}\right\}, \quad \forall x \in E,
$$

Received October 9, 2012; Accepted November 20, 2012.
2000 Mathematics Subject Classification. 47H09, 47J05, 47J2.
Key words and phrases. asymptotically nonexpansive mapping; fixed point; iterative process; nonexpansive mapping; variational inequality.

The first author was supported by Kyungnam University research fund, 2012.
where $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing. In particular, J_{2} is called the normalized duality mapping which is usually denoted by J. It is well known (see, for example, [17]) that $J_{q}(x)=\|x\|^{q-2} J(x)$ if $x \neq 0$.

Let $U_{E}=\{x \in E:\|x\|=1\}$. A Banach space E is said to be strictly convex if for all $x, y \in E$ which are linearly independent, $\|x+y\|<\|x\|+\|y\|$. This condition is equivalent to the following:

$$
\|x\|=\|y\|=1, \quad \text { and } \quad x \neq y \Longrightarrow\left\|\frac{x+y}{2}\right\|<1
$$

E is said to be uniformly convex if for any two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in E such that $\left\|x_{n}\right\|=\left\|y_{n}\right\|=1$ and $\lim _{n \rightarrow \infty}\left\|x_{n}+y_{n}\right\|=2$, then $\lim _{n \rightarrow \infty} \| x_{n}-$ $y_{n} \|=0$ holds. It is known that a uniformly convex Banach space is reflexive and strictly convex.

A Banach space E is said to be smooth if the limit

$$
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}
$$

exists for all $x, y \in U_{E}$. It is said to be uniformly smooth if the limit is attained uniformly for all $x, y \in U_{E}$.

The modulus of smoothness of E is the function $\rho_{E}:[0, \infty) \rightarrow[0, \infty)$ defined by

$$
\rho_{E}(\tau)=\sup \left\{\frac{1}{2}(\|x+y\|+\|x-y\|)-1:\|x\| \leq 1,\|y\| \leq \tau\right\}, \quad \forall \tau \geq 0
$$

The Banach space E is uniformly smooth if and only if $\lim _{\tau \rightarrow \infty} \frac{\rho_{E}(\tau)}{\tau}=0$. A Banach space E is said to be q-uniformly smooth if there exists a constant $c>0$ such that $\rho_{E}(\tau) \leq c \tau^{q}$. It is shown in [17] that there is no Banach space which is q-uniformly smooth with $q>2$. Hilbert spaces, L^{p} (or l^{p}) spaces and Sobolev space W_{m}^{p}, where $p \geq 2$, are 2-uniformly smooth. Typical examples of both uniformly convex and uniformly smooth Banach spaces are L^{p}, where $p>1$. More precisely, L^{p} is $\min \{p, 2\}$-uniformly smooth for every $p>1$.
E is said to satisfy Opial's condition (see [18]) if, for each sequence $\left\{x_{n}\right\}$ in $E, x_{n} \rightharpoonup x$, where \rightharpoonup denotes weak convergence, implies that

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|, \quad \forall y \in E(y \neq x)
$$

Let C be a nonempty subset of E and $T: C \rightarrow C$ be a mapping. In this paper, the symbol $F(T)$ stands for the fixed point set of T. T is said to be nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

T is said to be asymptotically nonexpansive if there exists a sequence $\left\{k_{n}\right\} \subset$ $[1, \infty)$ with $k_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|x-y\|, \quad \forall x, y \in C, \quad \forall n \geq 1
$$

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [19] as a generalization of the class of nonexpansive mappings. They
proved that if C is a nonempty, closed, convex, and bounded subset of a real uniformly convex Banach space, then every asymptotically nonexpansive self mapping has a fixed point (see [19]).

In order to prove our main results, we still need the following lemmas.
Lemma 2.1. ([20]) Let C be a nonempty, closed, and convex subset of a uniformly convex Banach space E. Let $T: C \rightarrow C$ be an asymptotically nonexpansive mapping. Then $I-T$ is demiclosed at zero, that is, $x_{n} \rightharpoonup x$ and $x_{n}-T x_{n} \rightarrow 0$ imply that $x=T x$.
Lemma 2.2. ([21]) Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be nonnegative sequences satisfying the following condition:

$$
a_{n+1} \leq\left(1+b_{n}\right) a_{n}+c_{n}, \quad \forall n \geq n_{0}
$$

where n_{0} is some nonnegative integer, $\sum_{n=1}^{\infty} b_{n}<\infty$ and $\sum_{n=1}^{\infty} c_{n}<\infty$. Then the limit $\lim _{n \rightarrow \infty} a_{n}$ exists.

Lemma 2.3. ([15]) Let E be a uniformly convex Banach space, $r>0$ a positive number and $B_{r}(0)$ a closed ball of E with the center at zero. Then there exits a continuous, strictly increasing and convex function $g:[0, \infty) \rightarrow[0, \infty)$ with $g(0)=0$ such that

$$
\left\|\sum_{s=1}^{m}\left(\alpha_{s} x_{s}\right)\right\|^{2} \leq \sum_{s=1}^{m}\left(\alpha_{s}\left\|x_{s}\right\|^{2}\right)-\alpha_{i} \alpha_{j} g\left(\left\|x_{i}-x_{j}\right\|\right), \quad \forall i, j \in\{1,2, \ldots, r\},
$$

where $x_{1}, x_{2}, \ldots, x_{m} \in B_{r}(0)$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in(0,1)$ such that $\sum_{i=1}^{m} \alpha_{i}=$ 1.

3. Main results

Let C be a nonempty, closed and convex subset of a Banach space E. Let $T: C \rightarrow C$ be an asymptotically nonexpansive mapping with the sequence $\left\{k_{n}\right\}$. For every $u \in C$ and $t_{n} \in(0,1)$, define a mapping $T_{n}: C \rightarrow C$ by

$$
T_{n} x=t_{n} u+\left(1-t_{n}\right) T^{n} x, \quad \forall x \in C, \quad \forall n \geq 1 .
$$

If $\left(1-t_{n}\right) k_{n}<1$, for every $n \geq 1$, then T_{n} is a contraction. Hence, by the Banach contraction principal, there exists a unique fixed point of T_{n}, for every $n \geq 1$.

Let x_{0} be chosen and $r \geq 1$ a positive integer. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n, 1}\right\},\left\{\beta_{n, 2}\right\}, \ldots$, $\left\{\beta_{n, r}\right\},\left\{\gamma_{n, 1}\right\},\left\{\gamma_{n, 2}\right\}, \ldots,\left\{\gamma_{n, r}\right\}$ be real sequences in $(0,1)$ such that

$$
\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m}+\sum_{m=1}^{r} \gamma_{n, m}=1
$$

Let $S_{m}, T_{m}: C \rightarrow C$ be asymptotically nonexpansive mappings, for every $m \in\{1,2, \ldots, r\}$.

Find x_{1} by solving the following equation

$$
x_{1}=\alpha_{1} x_{0}+\sum_{m=1}^{r} \beta_{1, m} S_{m} x_{0}+\sum_{m=1}^{r} \gamma_{1, m} T_{m} x_{1} .
$$

Find x_{2} by solving the following equation

$$
x_{2}=\alpha_{2} x_{1}+\sum_{m=1}^{r} \beta_{2, m} S_{m}^{2} x_{1}+\sum_{m=1}^{r} \gamma_{2, m} T_{m}^{2} x_{2}
$$

Find x_{n} by solving the following equation

$$
x_{n}=\alpha_{n} x_{n-1}+\sum_{m=1}^{r} \beta_{n, m} S_{m}^{n} x_{n-1}+\sum_{m=1}^{r} \gamma_{n, m} T_{m}^{n} x_{n} .
$$

In view of the above, we have the following implicit iterative algorithm

$$
\begin{equation*}
x_{0} \in C, \quad x_{n}=\alpha_{n} x_{n-1}+\sum_{m=1}^{r} \beta_{n, m} S_{m}^{n} x_{n-1}+\sum_{m=1}^{r} \gamma_{n, m} T_{m}^{n} x_{n}, \quad \forall n \geq 1 \tag{3.1}
\end{equation*}
$$

If $S_{m}=I$, where I is the identity mapping, for every $m \in\{1,2, \ldots, r\}$, then (3.1) is reduced the following.

$$
\begin{equation*}
x_{0} \in C, \quad x_{n}=\left(\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m}\right) x_{n-1}+\sum_{m=1}^{r} \gamma_{n, m} T_{m}^{n} x_{n}, \quad \forall n \geq 1 \tag{3.2}
\end{equation*}
$$

If $T_{m}=I$, where I stands for the identity mapping, for every $m \in\{1,2, \ldots, r\}$, then (3.1) is reduced the following.

$$
\begin{equation*}
x_{0} \in C, x_{n}=\frac{\alpha_{n}}{1-\sum_{m=1}^{r} \gamma_{n, m}} x_{n-1}+\frac{\sum_{m=1}^{r} \beta_{n, m}}{1-\sum_{m=1}^{r} \gamma_{n, m}} S_{m}^{n} x_{n-1}, \forall n \geq 1 \tag{3.3}
\end{equation*}
$$

Now, we neeed the following proposition for our main results.
Proposition 3.1. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space E. Let $S_{m}, T_{m}: C \rightarrow C$ be asymptotically nonexpansive mappings with the sequence $\left\{s_{n, m}\right\}$ and $\left\{t_{n, m}\right\}$, for every $m \in$ $\{1,2, \ldots, r\}$, where $r \geq 1$. Assume that $\mathscr{F}=\cap_{m=1}^{r} F\left(S_{m}\right) \bigcap \cap_{m=1}^{r} F\left(T_{m}\right)$ is nonempty. Let $t_{n}=\max \left\{t_{n, m}: 1 \leq m \leq r\right\}$ and $s_{n}=\max \left\{s_{n, m}: 1 \leq m \leq r\right\}$. Assume that $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty$, where $k_{n}=\max \left\{s_{n}, t_{n}: 1 \leq m \leq r\right\}$. Let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be a sequence generated by (3.1), where $\left\{\alpha_{n}\right\},\left\{\beta_{n, 1}\right\},\left\{\beta_{n, 2}\right\}, \ldots$, $\left\{\beta_{n, r}\right\},\left\{\gamma_{n, 1}\right\},\left\{\gamma_{n, 2}\right\}, \ldots,\left\{\gamma_{n, r}\right\}$ are real number sequences in $(0,1)$ such that $\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m}+\sum_{m=1}^{r} \gamma_{n, m}=1$. Assume that the control sequences $\left\{\alpha_{n}\right\}$, $\left\{\beta_{n, 1}\right\},\left\{\beta_{n, 2}\right\}, \ldots,\left\{\beta_{n, r}\right\},\left\{\gamma_{n, 1}\right\},\left\{\gamma_{n, 2}\right\}, \ldots,\left\{\gamma_{n, r}\right\}$ are satisfied
(a) $\liminf _{n \rightarrow \infty} \alpha_{n} \beta_{n, m}>0$, and $\liminf _{n \rightarrow \infty} \alpha_{n} \gamma_{n, m}>0, \forall m \in\{1,2, \ldots, r\}$;
(b) $\sum_{m=1}^{r} \gamma_{n, m} t_{n}<1$.

Then

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-S_{m} x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-T_{m} x_{n}\right\|=0, \quad \forall m \in\{1,2, \ldots, r\}
$$

Proof. By the condition (b), we see that the sequence $\left\{x_{n}\right\}$ generated by iterative process (3.1) is well defined. For $p \in \mathscr{F}$, we see that

$$
\begin{aligned}
\left\|x_{n}-p\right\| & \leq \alpha_{n}\left\|x_{n-1}-p\right\|+\sum_{m=1}^{r} \beta_{n, m}\left\|S_{m}^{n} x_{n-1}-p\right\|+\sum_{m=1}^{r} \gamma_{n, m}\left\|T_{m}^{n} x_{n}-p\right\| \\
& \leq\left(\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m} k_{n}\right)\left\|x_{n-1}-p\right\|+\sum_{m=1}^{r} \gamma_{n, m} k_{n}\left\|x_{n}-p\right\|
\end{aligned}
$$

In view of $\liminf _{n \rightarrow \infty} \alpha_{n} \beta_{n, m}>0$ and $\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m}+\sum_{m=1}^{r} \gamma_{n, m}=1$, we see that there exists some positive integer n_{1} and a real number a, where $a \in(0,1)$, such that

$$
\sum_{m=1}^{r} \gamma_{n, m} \leq a, \quad \forall n \geq n_{1}
$$

Since $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty$, there exists some positive integer n_{2} such that $k_{n} \leq 1+\frac{1-a}{2 a}$, for all $n \geq n_{2}$. It follows that

$$
\sum_{m=1}^{r} \gamma_{n, m} k_{n} \leq b<1, \quad \forall n \geq n_{3}
$$

where $b=a\left(1+\frac{1-a}{2 a}\right)$ and $n_{3}=\max \left\{n_{1}, n_{2}\right\}$. It follows that

$$
\begin{align*}
\left\|x_{n}-p\right\| & \leq \frac{\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m} k_{n}}{1-\sum_{m=1}^{r} \gamma_{n, m} k_{n}}\left\|x_{n-1}-p\right\| \\
& \leq\left(1+\frac{\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m} k_{n}+\sum_{m=1}^{r} \gamma_{n, m} k_{n}-1}{1-\sum_{m=1}^{r} \gamma_{n, m} k_{n}}\right)\left\|x_{n-1}-p\right\| \tag{3.4}\\
& \leq\left(1+\frac{k_{n}-1}{1-b}\right)\left\|x_{n-1}-p\right\| .
\end{align*}
$$

It follows from Lemma 2.2 that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. This implies that the sequence $\left\{x_{n}\right\}$ is bounded.

On the other hand, we find from Lemma 2.3 that

$$
\begin{aligned}
\left\|x_{n}-p\right\|^{2} \leq & \alpha_{n}\left\|x_{n-1}-p\right\|^{2}+\sum_{m=1}^{r} \beta_{n, m}\left\|S_{m}^{n} x_{n-1}-p\right\|^{2}+\sum_{m=1}^{r} \gamma_{n, m}\left\|T_{m}^{n} x_{n}-p\right\|^{2} \\
& -\alpha_{n} \beta_{n, m} g\left(\left\|x_{n-1}-S_{m}^{n} x_{n-1}\right\|\right) \\
\leq & \left(\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m} k_{n}\right)\left\|x_{n-1}-p\right\|^{2}+\sum_{m=1}^{r} \gamma_{n, m} k_{n}\left\|x_{n}-p\right\|^{2} \\
& -\alpha_{n} \beta_{n, m} g\left(\left\|x_{n-1}-S_{m}^{n} x_{n-1}\right\|\right), \quad \forall m \in\{1,2, \ldots, N\} .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \alpha_{n} \beta_{n, m} g\left(\left\|x_{n-1}-S_{m}^{n} x_{n-1}\right\|\right) \\
& \leq \\
& \quad\left(\alpha_{n} k_{n}+\sum_{m=1}^{r} \beta_{n, m} k_{n}\right)\left\|x_{n-1}-p\right\|^{2}+\sum_{m=1}^{r} \gamma_{n, m} k_{n}\left\|x_{n}-p\right\|^{2} \\
& \quad-k_{n}\left\|x_{n}-p\right\|^{2}+\left(k_{n}-1\right)\left\|x_{n}-p\right\|^{2} \\
& \leq \\
& \quad\left(\alpha_{n} k_{n}+\sum_{m=1}^{r} \beta_{n, m} k_{n}\right)\left(\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n}-p\right\|^{2}\right) \\
& \quad+\left(k_{n}-1\right)\left\|x_{n}-p\right\|^{2}, \quad \forall m \in\{1,2, \ldots, r\} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists, from the condition (a) we have that

$$
\lim _{n \rightarrow \infty} g\left(\left\|x_{n-1}-S_{m}^{n} x_{n-1}\right\|\right)=0
$$

for every $m \in\{1,2, \ldots, r\}$. It follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n-1}-S_{m}^{n} x_{n-1}\right\|=0, \quad \forall m \in\{1,2, \ldots, r\} \tag{3.5}
\end{equation*}
$$

From the Lemma 2.3, we obthain that

$$
\begin{aligned}
\left\|x_{n}-p\right\|^{2} \leq & \alpha_{n}\left\|x_{n-1}-p\right\|^{2}+\sum_{m=1}^{r} \beta_{n, m}\left\|S_{m}^{n} x_{n-1}-p\right\|^{2}+\sum_{m=1}^{r} \gamma_{n, m}\left\|T_{m}^{n} x_{n}-p\right\|^{2} \\
& -\alpha_{n} \gamma_{n, m} g\left(\left\|x_{n-1}-T_{m}^{n} x_{n}\right\|\right) \\
\leq & \left(\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m} k_{n}\right)\left\|x_{n-1}-p\right\|^{2}+\sum_{m=1}^{r} \gamma_{n, m} k_{n}\left\|x_{n}-p\right\|^{2} \\
& -\alpha_{n} \gamma_{n, m} g\left(\left\|x_{n-1}-T_{m}^{n} x_{n}\right\|\right), \quad \forall m \in\{1,2, \ldots, r\} .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \alpha_{n} \gamma_{n, m} g\left(\left\|x_{n-1}-T_{m}^{n} x_{n}\right\|\right) \\
& \leq \\
& \quad\left(\alpha_{n} k_{n}+\sum_{m=1}^{r} \beta_{n, m} k_{n}\right)\left\|x_{n-1}-p\right\|^{2}+\sum_{m=1}^{r} \gamma_{n, m} k_{n}\left\|x_{n}-p\right\|^{2} \\
& \quad-k_{n}\left\|x_{n}-p\right\|^{2}+\left(k_{n}-1\right)\left\|x_{n}-p\right\|^{2} \\
& \leq \\
& \quad\left(\alpha_{n} k_{n}+\sum_{m=1}^{r} \beta_{n, m} k_{n}\right)\left(\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n}-p\right\|^{2}\right) \\
& \quad+\left(k_{n}-1\right)\left\|x_{n}-p\right\|^{2}, \quad \forall m \in\{1,2, \ldots, N\} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists, from the condition (a) we have that

$$
\lim _{n \rightarrow \infty} g\left(\left\|x_{n-1}-T_{m}^{n} x_{n}\right\|\right)=0
$$

for every $m \in\{1,2, \ldots, r\}$. It follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n-1}-T_{m}^{n} x_{n}\right\|=0, \quad \forall m \in\{1,2, \ldots, r\} \tag{3.6}
\end{equation*}
$$

Notice that

$$
\left\|x_{n}-x_{n-1}\right\|=\sum_{m=1}^{r} \beta_{n, m}\left\|S_{m}^{n} x_{n-1}-x_{n-1}\right\|+\sum_{m=1}^{r} \gamma_{n, m}\left\|T_{m}^{n} x_{n}-x_{n-1}\right\|
$$

From the (3.5) and (3.6), we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n-1}-x_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

Notice that

$$
\left\|x_{n}-T_{m}^{n} x_{n}\right\| \leq\left\|x_{n}-x_{n-1}\right\|+\left\|x_{n-1}-T_{m}^{n} x_{n}\right\|, \quad \forall m \in\{1,2, \ldots, r\} .
$$

This implies from (3.6), and (3.7) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{m}^{n} x_{n}\right\|=0, \quad \forall m \in\{1,2, \ldots, r\} \tag{3.8}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
\left\|x_{n}-S_{m}^{n} x_{n}\right\| \leq & \left\|x_{n}-x_{n-1}\right\|+\left\|x_{n-1}-S_{m}^{n} x_{n-1}\right\| \\
& +\left\|S_{m}^{n} x_{n-1}-S_{m}^{n} x_{n}\right\|, \quad \forall m \in\{1,2, \ldots, r\}
\end{aligned}
$$

Since S_{m} is Lipschitz for every $m \in\{1,2, \ldots, r\}$, from (3.5) and (3.7) we know that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-S_{m}^{n} x_{n}\right\|=0, \quad \forall m \in\{1,2, \ldots, r\} \tag{3.9}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
\left\|x_{n}-S_{m} x_{n}\right\| \leq & \left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-S_{m}^{n+1} x_{n+1}\right\| \\
& +\left\|S_{m}^{n+1} x_{n+1}-S_{m}^{n+1} x_{n}\right\|+\left\|S_{m}^{n+1} x_{n}-S_{m} x_{n}\right\| \\
\leq & (1+M)\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-S_{m}^{n+1} x_{n+1}\right\| \\
& +M\left\|S_{m}^{n} x_{n}-x_{n}\right\|,
\end{aligned}
$$

where $M=\sup _{n \geq 1}\left\{k_{n}\right\}$. It follows from (3.7) and (3.9) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-S_{m} x_{n}\right\|=0, \quad \forall m \in\{1,2, \ldots, r\} \tag{3.10}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
\left\|x_{n}-T_{m} x_{n}\right\| \leq & \left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-T_{m}^{n+1} x_{n+1}\right\| \\
& +\left\|T_{m}^{n+1} x_{n+1}-T_{m}^{n+1} x_{n}\right\|+\left\|T_{m}^{n+1} x_{n}-T_{m} x_{n}\right\| \\
\leq & (1+M)\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-T_{m}^{n+1} x_{n+1}\right\| \\
& +M\left\|T_{m}^{n} x_{n}-x_{n}\right\| .
\end{aligned}
$$

It follows from (3.7) and (3.8) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{m} x_{n}\right\|=0, \quad \forall m \in\{1,2, \ldots, r\} \tag{3.11}
\end{equation*}
$$

This completes the proof.
Now, we give the following weak convergence theorems with Opial's condition.

Theorem 3.2. Let C be a nonempty, closed, and convex subset of a uniformly convex Banach space E which has Opial's condition. Let S_{m}, T_{m} : $C \rightarrow C$ be asymptotically nonexpansive mapping with the sequence $\left\{s_{n, m}\right\}$ and $\left\{t_{n, m}\right\}$, for every $m \in\{1,2, \ldots, r\}$, where $r \geq 1$. Assume that $\mathscr{F}=$ $\cap_{m=1}^{r} F\left(S_{m}\right) \bigcap \cap_{m=1}^{r} F\left(T_{m}\right)$ is nonempty. Let $t_{n}=\max \left\{t_{n, m}: 1 \leq m \leq r\right\}$ and $s_{n}=\max \left\{s_{n, m}: 1 \leq m \leq r\right\}$. Assume that $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty$, where $k_{n}=\max \left\{s_{n}, t_{n}: 1 \leq m \leq r\right\}$. Let $\left\{x_{n}\right\}$ be a sequence generated by (3.1), where $\left\{\alpha_{n}\right\},\left\{\beta_{n, 1}\right\},\left\{\beta_{n, 2}\right\}, \ldots,\left\{\beta_{n, r}\right\},\left\{\gamma_{n, 1}\right\},\left\{\gamma_{n, 2}\right\}, \ldots,\left\{\gamma_{n, r}\right\}$ are real number sequences in $(0,1)$ such that $\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m}+\sum_{m=1}^{r} \gamma_{n, m}=1$. Assume that restrictions (a) and (b) as in Proposition 3.1 are satisfied. Then $\left\{x_{n}\right\}$ converges weakly to some point in \mathscr{F}.

Proof. Since $\left\{x_{n}\right\}$ is bounded, we find that there exists a subsequence $\left\{x_{n_{i}}\right\} \subset$ $\left\{x_{n}\right\}$ such that $\left\{x_{n_{i}}\right\}$ converges weakly to a point $\bar{x} \in C$. It follows from Lemma 2.1 and Proposition 3.1 that $\bar{x} \in \mathscr{F}$. Assume that there exists another subsequence $\left\{x_{n_{j}}\right\} \subset\left\{x_{n}\right\}$ such that $\left\{x_{n_{j}}\right\}$ converges weakly to a point $\hat{x} \in C$. It follows from Lemma 2.1 that $\hat{x} \in \mathscr{F}$. If $\bar{x} \neq \hat{x}$, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\| & =\liminf _{i \rightarrow \infty}\left\|x_{n_{i}}-\bar{x}\right\|<\liminf _{i \rightarrow \infty}\left\|x_{n_{i}}-\hat{x}\right\| \\
& =\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-\hat{x}\right\|<\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-\bar{x}\right\| \\
& =\lim _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\| .
\end{aligned}
$$

This is a contradiction. Hence $\bar{x}=\hat{x}$. Hence every subsequence converges to same point \bar{x}. This completes the proof.

If $r=1$, then Theorem 3.2 is reduced to the following.
Corollary 3.3. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space E which has Opial's condition. Let $S, T: C \rightarrow C$ be an asymptotically nonexpansive mappings with the sequences $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$. Assume that $\mathscr{F}=F(S) \bigcap F(T)$ is nonempty. Assume that $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty$, where $k_{n}=\max \left\{s_{n}, t_{n}: 1 \leq m \leq r\right\}$. Let $\left\{x_{n}\right\}$ be a sequence generated by the following

$$
x_{0} \in C, \quad x_{n}=\alpha_{n} x_{n-1}+\beta_{n} S^{n} x_{n-1}+\gamma_{n} T^{n} x_{n}, \quad \forall n \geq 1
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are real number sequences in $(0,1)$ such that $\alpha_{n}+$ $\beta_{n}+\gamma_{n}=1$. Assume that the following restrictions imposed on the control sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are satisfied
(a) $\liminf _{n \rightarrow \infty} \alpha_{n} \beta_{n}>0$ and $\liminf _{n \rightarrow \infty} \alpha_{n} \gamma_{n}>0$;
(b) $\gamma_{n} t_{n}<1$.

Then $\left\{x_{n}\right\}$ converges weakly to some point in \mathscr{F}.
If $S_{m}=I$, then Theorem 3.2 is reduced to the following.
Corollary 3.4. Let C be a nonempty, closed, and convex subset of a uniformly convex Banach space E which has Opial's condition. Let $T_{m}: C \rightarrow C$
be an asymptotically nonexpansive mapping with the sequence $\left\{t_{n, m}\right\}$, for every $m \in\{1,2, \ldots, r\}$, where $r \geq 1$. Assume that $\mathscr{F}=\cap_{m=1}^{r} F\left(T_{m}\right)$ is nonempty. Assume that $\sum_{n=1}^{\infty}\left(t_{n}-1\right)<\infty$, where $t_{n}=\max \left\{t_{n, m}: 1 \leq m \leq r\right\}$. Let $\left\{x_{n}\right\}$ be a sequence generated by (3.2), where $\left\{\alpha_{n}\right\},\left\{\beta_{n, 1}\right\},\left\{\beta_{n, 2}\right\}, \ldots$, $\left\{\beta_{n, r}\right\},\left\{\gamma_{n, 1}\right\},\left\{\gamma_{n, 2}\right\}, \ldots,\left\{\gamma_{n, r}\right\}$ are real number sequences in $(0,1)$ such that $\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m}+\sum_{m=1}^{r} \gamma_{n, m}=1$. Assume that restrictions (a) and (b) in Proposition 3.1 are satisfied. Then $\left\{x_{n}\right\}$ converges weakly to some point in \mathscr{F}.

If $T_{m}=I$, then Theorem 3.2 is reduced to the following.
Corollary 3.5. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space E which has Opial's condition. Let $S_{m}: C \rightarrow C$ be an asymptotically nonexpansive mapping with the sequence $\left\{s_{n, m}\right\}$, for every $m \in\{1,2, \ldots, r\}$, where $r \geq 1$ with $\mathscr{F}=\cap_{m=1}^{r} F\left(S_{m}\right)$ is nonempty. Assume that $\sum_{n=1}^{\infty}\left(s_{n}-1\right)<\infty$, where $s_{n}=\max \left\{s_{n, m}: 1 \leq m \leq r\right\}$. Let $\left\{x_{n}\right\}$ be a sequence generated by (3.3), where $\left\{\alpha_{n}\right\},\left\{\beta_{n, 1}\right\},\left\{\beta_{n, 2}\right\}, \ldots$, $\left\{\beta_{n, r}\right\},\left\{\gamma_{n, 1}\right\},\left\{\gamma_{n, 2}\right\}, \ldots,\left\{\gamma_{n, r}\right\}$ are real number sequences in $(0,1)$ such that $\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m}+\sum_{m=1}^{r} \gamma_{n, m}=1$. Assume that the condition (a) in Proposition 3.1 are satisfied. Then $\left\{x_{n}\right\}$ converges weakly to some point in \mathscr{F}.

Next, we give a necessary and sufficient condition for the strong convergence of (3.1).

Theorem 3.6. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space E. Let $S_{m}, T_{m}: C \rightarrow C$ be asymptotically nonexpansive mappings with the sequences $\left\{s_{n, m}\right\}$ and $\left\{t_{n, m}\right\}$, for every $m \in\{1,2, \ldots, r\}$, where $r \geq 1$. Assume that $\mathscr{F}=\cap_{m=1}^{r} F\left(S_{m}\right) \cap \cap_{m=1}^{r} F\left(T_{m}\right)$ is nonempty. Let $t_{n}=\max \left\{t_{n, m}: 1 \leq m \leq r\right\}$ and $s_{n}=\max \left\{s_{n, m}: 1 \leq m \leq r\right\}$. Assume that $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty$, where $k_{n}=\max \left\{s_{n}, t_{n}: 1 \leq m \leq r\right\}$. Let $\left\{x_{n}\right\}$ be a sequence generated by (3.1), where $\left\{\alpha_{n}\right\},\left\{\beta_{n, 1}\right\},\left\{\beta_{n, 2}\right\}, \ldots$, $\left\{\beta_{n, r}\right\},\left\{\gamma_{n, 1}\right\},\left\{\gamma_{n, 2}\right\}, \ldots,\left\{\gamma_{n, r}\right\}$ are real number sequences in $(0,1)$ such that $\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m}+\sum_{m=1}^{r} \gamma_{n, m}=1$. Assume that the conditions (a) and (b) in Proposition 3.1 are satisfied. Then $\left\{x_{n}\right\}$ converges strongly to some point in \mathscr{F} if and only if

$$
\liminf _{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, \mathscr{F}\right)=0
$$

Proof. The necessity of the proof is obvious. We only show the sufficiency of the proof. Assume that $\lim _{\inf }^{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, \mathscr{F}\right)=0$. In view of (3.4), we know from Lemma 2.2 that $\lim _{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, \mathscr{F}\right)$ exists. From the hypothesis, it follows that $\lim _{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, \mathscr{F}\right)=0$.

Next, we show that the sequence $\left\{x_{n}\right\}$ is Cauchy. For positive integers m, n, where $m>n$, we see from (3.4) that $\left\|x_{n}-p\right\| \leq e^{h_{n}}\left\|x_{n-1}-p\right\|$, where $h_{n}=\frac{k_{n}-1}{1-a}$. This in turn implies that

$$
\left\|x_{m}-p\right\| \leq B\left\|x_{n}-p\right\|
$$

where $B=e^{\sum_{n=1}^{\infty} h_{n}}$. It follows that

$$
\left\|x_{n}-x_{m}\right\| \leq\left\|x_{n}-p\right\|+\left\|x_{m}-p\right\| \leq(1+B)\left\|x_{n}-p\right\| .
$$

Taking the infimum over all $p \in \mathscr{F}$, we find that $\left\{x_{n}\right\}$ is a Cauchy sequence in C. Assume that $\left\{x_{n}\right\}$ converges strongly to some $\bar{q} \in C$. Since T_{m} and S_{m} are Lipschitz for each $m \in\{1,2, \ldots, N\}$, we know that \mathscr{F} is closed. This in turn implies that $\bar{q} \in \mathscr{F}$. This completes the proof.

If $S_{m}=I$, then Theorem 3.6 is reduced to the following.
Corollary 3.7. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space E. Let $T_{m}: C \rightarrow C$ be an asymptotically nonexpansive mapping with the sequence $\left\{t_{n, m}\right\}$, for every $m \in\{1,2, \ldots, r\}$, where $r \geq 1$. Assume that $\mathscr{F}=\cap_{m=1}^{r} F\left(T_{m}\right)$ is nonempty. Assume that $\sum_{n=1}^{\infty}\left(t_{n}-1\right)<\infty$, where $t_{n}=\max \left\{t_{n, m}: 1 \leq m \leq r\right\}$. Let $\left\{x_{n}\right\}$ be a sequence generated by (3.2), where $\left\{\alpha_{n}\right\},\left\{\beta_{n, 1}\right\},\left\{\beta_{n, 2}\right\}, \ldots,\left\{\beta_{n, r}\right\},\left\{\gamma_{n, 1}\right\},\left\{\gamma_{n, 2}\right\}, \ldots,\left\{\gamma_{n, r}\right\}$ are real number sequences in $(0,1)$ such that $\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m}+\sum_{m=1}^{r} \gamma_{n, m}=1$. Assume that the conditions (a) and (b) in Proposition 3.1 are satisfied. Then $\left\{x_{n}\right\}$ converges strongly to some point in \mathscr{F} if and only if $\liminf _{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, \mathscr{F}\right)=0$.

If $T_{m}=I$, then Theorem 3.6 is reduced to the following.
Corollary 3.8. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space E. Let $S_{m}: C \rightarrow C$ be an asymptotically nonexpansive mapping with the sequence $\left\{s_{n, m}\right\}$, for every $m \in\{1,2, \ldots, r\}$, where $r \geq$ 1 is some positive integer. Assume that $\sum_{n=1}^{\infty}\left(s_{n}-1\right)<\infty$, where $s_{n}=$ $\max \left\{s_{n, m}: 1 \leq m \leq r\right\}$. Let $\left\{x_{n}\right\}$ be a sequence generated by (3.2), where $\left\{\alpha_{n}\right\},\left\{\beta_{n, 1}\right\},\left\{\beta_{n, 2}\right\}, \ldots,\left\{\beta_{n, r}\right\},\left\{\gamma_{n, 1}\right\},\left\{\gamma_{n, 2}\right\}, \ldots,\left\{\gamma_{n, r}\right\}$ are real number sequences in $(0,1)$ such that $\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m}+\sum_{m=1}^{r} \gamma_{n, m}=1$. Assume that the condition (a) in Proposition 3.1 are satisfied. Then $\left\{x_{n}\right\}$ converges strongly to some point in \mathscr{F} if and only if $\liminf _{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, \mathscr{F}\right)=0$.

4. Applications

Finally, we consider the problem of approximation solutions of variational inequalities as an application of main results.

Let C be a nonempty, closed and convex subset of a smooth Banach space E and $A: C \rightarrow E$ an operator. Find an $x \in C$ such that

$$
\begin{equation*}
\langle A x, J(y-x)\rangle \geq 0, \quad \forall y \in C . \tag{4.1}
\end{equation*}
$$

In what follows, the symbol $V I(C, A)$ stands for the solution set of the above inequality (4.1).
A is said to be accretive if

$$
\langle A x-A y, J(x-y)\rangle \geq 0, \quad \forall x, y \in C
$$

A is said to be α-inverse-strongly accretive if there exists a positive constant α such that

$$
\langle A x-A y, J(x-y)\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in C .
$$

Let K be a nonempty subset of C and let $Q: C \rightarrow K$ be a mapping. Q is said to be sunny if

$$
Q x=Q(Q x+t(x-Q x))
$$

whenever $Q x+t(x-Q x) \in C$ for $x \in C$ and $t \geq 0$. Q is said to be retraction if $Q^{2}=Q . Q$ is said to be a sunny nonexpansive retraction if Q is sunny nonexpansive and a retraction onto K. A subset K of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto K.

The following results describe a characterization of sunny nonexpansive retractions on a smooth Banach space; see [22] and [23] for more details.

Let C be a nonempty subset of a smooth Banach space E. Let Q_{C} be a sunny nonexpansive retraction from E onto C. Then the following are equivalent:
(a) Q_{C} is sunny and nonexpansive;
(b) $\langle x-Q x, J(Q x-y)\rangle, \forall x \in C, y \in K$.

The following lemma can be found in [17] and [24].
Lemma 4.1. Let E be a q-uniformly smooth Banach space with q-uniformly smoothness constant $C_{q}>0$. Then the following holds

$$
\|x+y\|^{q} \leq\|x\|^{q}+q\left\langle y, J_{q} x\right\rangle+C_{q}\|y\|^{q}, \quad \forall x, y \in E .
$$

Now, we are in a position to give the main results of this section.
Theorem 4.2. Let E be a uniformly convex and q-uniformly smooth Banach space with q-uniformly smoothness constant $C_{q}>0$ and C be a nonempty, closed and convex subset of E. Let Q_{C} be a sunny nonexpansive retraction from E onto C. Let $A_{m}: C \rightarrow E$ be a a_{m}-inverse-strongly accretive operator and $B_{m}: C \rightarrow E$ a b_{m}-inverse-strongly accretive operator, for every $m \in$ $\{1,2, \ldots, r\}$, where $r \geq 1$. Assume that $\mathscr{F}=\cap_{m=1}^{r} V I\left(C, A_{m}\right) \bigcap \cap_{m=1}^{r} V I\left(C, B_{m}\right)$ is nonempty. Let $\left\{x_{n}\right\}$ be a sequence generated by the following: $x_{0} \in C$,

$$
\begin{align*}
x_{n}= & \alpha_{n} x_{n-1}+\sum_{m=1}^{r} \beta_{n, m} Q_{C}\left(x_{n-1}-\mu_{m} A_{m} x_{n-1}\right) \\
& +\sum_{m=1}^{r} \gamma_{n, m} Q_{C}\left(x_{n}-\nu_{m} B_{m} x_{n}\right), \quad \forall n \geq 1 \tag{4.2}
\end{align*}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n, 1}\right\},\left\{\beta_{n, 2}\right\}, \cdots,\left\{\beta_{n, r}\right\},\left\{\gamma_{n, 1}\right\},\left\{\gamma_{n, 2}\right\}, \cdots,\left\{\gamma_{n, r}\right\}$ are real number sequences in $(0,1)$ such that $\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m}+\sum_{m=1}^{r} \gamma_{n, m}=1$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{r}, \nu_{1}, \nu_{2}, \ldots, \nu_{r}$ are real numbers such that $\mu_{m} \leq\left(\frac{q a_{m}}{C_{q}}\right)^{\frac{1}{q}}$ and $\nu_{m} \leq\left(\frac{q b_{m}}{C_{q}}\right)^{\frac{1}{q}}$, for every $m \in\{1,2, \ldots, r\}$. Assume that the condition (a) in Proposition 3.1 are satisfied. If E has Opial's condition, then $\left\{x_{n}\right\}$ converges weakly to some point in \mathscr{F}.

Proof. From Lemma 2.7 of Aoyama, Iiduka and Takahashi [24], we find, for every $m \in\{1,2, \cdots, r\}$, that $V I\left(C, A_{m}\right)=F\left(Q_{C}(I-\lambda A)\right)$ and $V I\left(C, A_{m}\right)=$
$F\left(Q_{C}(I-\lambda B)\right)$ for all $\lambda>0$. Notice that $Q_{C}\left(I-\mu_{m} A_{m}\right)$ and $Q_{C}\left(I-\nu_{m} B_{m}\right)$ are nonexpansive. Indeed, we find from Lemma 4.1 that

$$
\begin{aligned}
& \left\|Q_{C}\left(I-\mu_{m} A_{m}\right) x-Q_{C}\left(I-\mu_{m} A_{m}\right) y\right\|^{q} \\
& \leq\left\|(x-y)-\mu_{m}\left(A_{m} x-A_{m} y\right)\right\|^{q} \\
& \leq\|x-y\|^{q}-q \mu_{m}\left\langle A_{m} x-A_{m} y, J_{q}(x-y)\right\rangle+C_{q} \mu_{m}^{q}\left\|A_{m} x-A_{m} y\right\|^{q} \\
& \leq\|x-y\|^{q}-q a_{m} \mu_{m}\left\|A_{m} x-A_{m} y\right\|^{q}+C_{q} \mu_{m}^{q}\left\|A_{m} x-A_{m} y\right\|^{q} \\
& =\|x-y\|^{q}-\left(q a_{m} \mu_{m}-C_{q} \mu_{m}^{q}\right)\left\|A_{m} x-A_{m} y\right\|^{q} \\
& =\|x-y\|^{q}, \quad \forall x, y \in C .
\end{aligned}
$$

This proves that $Q_{C}\left(I-\mu_{m} A\right)$ is nonexpansive, so is $Q_{C}\left(I-\mu_{m} B\right)$. Since nonexpansive mappings are asymptotically nonexpansive mappings with the sequence $\{1\}$, we can easily conclude from Theorem 3.2 the desired conclusion. This completes the proof.

Theorem 4.3. Let E be a uniformly convex and q-uniformly smooth Banach space with q-uniformly smoothness constant $C_{q}>0$ and C a nonempty, closed and convex subset of E. Let Q_{C} be a sunny nonexpansive retraction from E onto C. Let $A_{m}: C \rightarrow E$ be an a_{m}-inverse-strongly accretive operator and B_{m} : $C \rightarrow E$ a b_{m}-inverse-strongly accretive operator, for every $m \in\{1,2, \ldots, r\}$, where $r \geq 1$. Assume that $\mathscr{F}=\cap_{m=1}^{r} V I\left(C, A_{m}\right) \bigcap \cap_{m=1}^{r} V I\left(C, B_{m}\right)$ is nonempty and $C_{q} \leq \lambda$, where $\lambda=\min \left\{a_{m} \mu_{m}, b_{m} \nu_{m}: 1 \leq m \leq r\right\}$. Let $\left\{x_{n}\right\}$ be a sequence generated by the following: $x_{0} \in C$,

$$
\begin{aligned}
x_{n}= & \alpha_{n} x_{n-1}+\sum_{m=1}^{r} \beta_{n, m} Q_{C}\left(x_{n-1}-\mu_{m} A_{m} x_{n-1}\right) \\
& +\sum_{m=1}^{r} \gamma_{n, m} Q_{C}\left(x_{n}-\nu_{m} B_{m} x_{n}\right), \quad \forall n \geq 1
\end{aligned}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n, 1}\right\},\left\{\beta_{n, 2}\right\}, \cdots,\left\{\beta_{n, r}\right\},\left\{\gamma_{n, 1}\right\},\left\{\gamma_{n, 2}\right\}, \cdots,\left\{\gamma_{n, r}\right\}$ are real number sequences in $(0,1)$ such that $\alpha_{n}+\sum_{m=1}^{r} \beta_{n, m}+\sum_{m=1}^{r} \gamma_{n, m}=1$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{r}, \nu_{1}, \nu_{2}, \ldots, \nu_{r}$ are real numbers such that $\mu_{m} \leq\left(\frac{q a_{m}}{C_{q}}\right)^{\frac{1}{q}}$ and $\nu_{m} \leq\left(\frac{q b_{m}}{C_{q}}\right)^{\frac{1}{q}}$, for every $m \in\{1,2, \cdots, r\}$. Assume that the condition (a) in Proposition 3.1 are satisfied. Then $\left\{x_{n}\right\}$ converges strongly to some point in \mathscr{F} if and only if $\liminf _{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, \mathscr{F}\right)=0$.
Proof. Notice that $Q_{C}\left(I-\mu_{m} A_{m}\right)$, and $Q_{C}\left(I-\nu_{m} B_{m}\right)$ are nonexpansive. We can immediately conclude from Theorem 3.6 the desired conclusion. This completes the proof.

References

[1] H.H. Bauschke, J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev. 38 (1996), 367-426.
[2] T. Kotzer, N. Cohen, J. Shamir, Image restoration by a novel method of parallel projection onto constraint sets, Optim. Lett. 20 (1995), 1772-1774.
[3] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl. 20 (2008), 103-120.
[4] Y. Censor, T. Elfving, N. Kopf, Bortfeld, T. The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl. 21 (2005), 2071-2084.
[5] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol. 51 (2006), 2353-2365.
[6] G. Lopez, V. Martin, H.K. Xu, Perturbation techniques for nonexpansive mappings with applications, Nonlinear Anal. 10 (2009), 2369-2383.
[7] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276.
[8] J. Schu, Weak and Strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Sco. 43 (1991), 153-159.
[9] S.H. Khan, I. Yildirim, M. Ozdemir, Convergence of an implicit algorithm for two families of nonexpansive mappings, Comput. Math. Appl. 59 (2010), 3084-3091.
[10] G.L. Acedo, H.K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 67 (2007), 2258-2271.
[11] X. Qin, S.M. Kang, R.P. Agarwal, On the convergence of an implicit iterative process for generalized asymptotically quasi-nonexpansive mappings, Fixed Point Thory Appl. 2010 (2010), 714860.
[12] X. Qin, J.K. Kim, T.Z. Wang, On the convergence of implicit iterative processes for asymptotically pseudocontractive mappings in the intermediate sense, Appl. Abst. Anal. 2011 (20110), 468716.
[13] X. Qin, S.Y. Cho, Implicit iterative algorithms for treating strongly continuous semigroups of Lipschitz pseudocontractions, Appl. Math. Lett. 23 (2010), 1252-1255.
[14] J.K. Kim, Y.M. Nam, J.Y. Sim, Convergence theorems of implicit iterative sequences for a finite family of asymptotically quasi-nonexpansive type mappings, Nonlinear Anal. 71 (2009), e2839-e2848.
[15] Y. Hao, S.Y. Cho, X. Qin, Some weak convergence theorems for a family of asymptotically nonexpansive nonself Mappings, Fixed Point Theory Appl. 2010 (2010), Article ID 218573.
[16] S.S. Chang, K.K. Tan, H.W.J. Lee, C.K. Chan, On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 313 (2006), 273-283.
[17] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138.
[18] Z. Opial, Weak convergence of the sequence of successive appproximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
[19] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
[20] S.S. Chang, Y.J. Cho, H.Y. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc. 38 (2001), 1245-1260.
[21] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308.
[22] R.E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341-355.
[23] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44 (1973), 57-70.
[24] K. Aoyama, H. Iiduma, W. Takahashi, Weak convergence of an iterative sequence for accretive operators in Banach spaces, Fixed Point Theory Appl. 2006 (2006), 35390.

Jong Kyu Kim
Department of Mathematics Education, Kyungnam University,
Masan 631-701, Korea
E-mail address: jongkyuk@kyungnam.ac.kr
Xiaolong Qin
School of Mathematics and Information Sciences,
North China University of Water Resources and Electric Power, Zhengzhou 450011, China
E-mail address: eamil@bbbb.bb.bb
Won Hee Lim
Department of Mathematics, Kyungnam University,
Masan 631-701, Korea
E-mail address: worry36@kyungnam.ac.kr

