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AN ITERATIVE SCHEME FOR EQUILIBRIUM PROBLEMS
AND FIXED POINT PROBLEMS OF ASYMPTOTICALLY

k-STRICT PSEUDO-CONTRACTIVE MAPPINGS

Ziming Wang and Yongfu Su

Abstract. In this paper, we propose an iterative scheme for finding a
common element of the set of solutions of an equilibrium problem and
the set of fixed points of an asymptotically k-strict pseudo-contractive
mapping in the setting of real Hilbert spaces. We establish some weak and
strong convergence theorems of the sequences generated by our proposed
scheme. Our results are more general than the known results which are
given by many authors. In particular, necessary and sufficient conditions
for strong convergence of our iterative scheme are obtained.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
respectively. Let C be a nonempty closed convex subset of H and F : C×C → R
be a bifunction, where R is the set of real numbers. The equilibrium problem
(for short, EP ) is to find x ∈ C such that

(1.1) F (x, y) ≥ 0 for all y ∈ C.

The set of solutions of (1.1) is denoted by EP (F ). Given a mapping T : C → H,
let F (x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then, z ∈ EP (F ) if and only if
〈Tz, y − z〉 ≥ 0 for all y ∈ C, i.e., z is a solution of the variational inequality.

In addition, there are so many other problems which also can be transformed
into the model of an EP , for example, the complementarity problem, fixed point
problem and optimization problem. In other words, the EP provides us with
a natural, novel and unified framework for studying a wide class of problems
arising in economics, finance, physics, transportation, network and structural
analysis, elasticity and optimization, etc. Recently, many papers have appeared
in the literature on the existence of solutions of EP (see e.g., [1, 6, 8, 9] and
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references therein). Some solutions have been proposed to solve the EP (see
e.g., [2, 3, 4, 5, 14, 15] and references therein).

Recall that a mapping T : C → C is called nonexpansive if

(1.2) ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.

We denote by F (T ) the set of all fixed points of T , that is, F (T ) = {x ∈ D(T ) :
Tx = x}. If C is nonempty, closed and convex subset of a real Hilbert space H,
then F (T ) is closed and convex; Further, if C is bounded, closed and convex,
then F (T ) is nonempty, see [7] for more details.

Takahashi and Takahashi [15] introduced an iterative scheme by the viscosity
approximation method for finding a common element of the set of solutions of
the EP (1.1) and the set of fixed points of a nonexpansive mapping in the
setting of Hilbert spaces. They also studied the strong convergence of the
sequences generated by their algorithm for a solution of the EP which is also
a fixed point of a nonexpansive mapping defined on a closed convex subset of
a Hilbert space.

Given a closed convex subset C of a real Hilbert space H. A mapping
T : C → C is called k-strict pseudo-contractive mapping if there exists a
constant 0 ≤ k < 1 such that

(1.3) ‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2 for all x, y ∈ C.

Clearly,we find T is a nonexpensive mapping if and only if T is a 0-strict
pseudo-contractive mapping.

A mapping T : C → C is said to be an asymptotically k-strict pseudo-
contractive mapping with sequence {γn} if there exist a constant k ∈ [0, 1) and
a sequence {γn} in [0,∞) with limn→∞ γn = 0 such that

(1.4) ‖Tnx− Tny‖2 ≤ (1 + γn)‖x− y‖2 + k‖(I − Tn)x− (I − Tn)y‖2

for all x, y ∈ C. We easily obtain that every k-strict pseudo-contractive map-
pings are asymptotically k-strict pseudo-contractive mappings with sequence
{γn}, where γn ≡ 0, and n = 1.

Very recently, Ceng, Homidan, Ansari, and Yao [2] introduced the following
iterative scheme:

Let C be a nonempty closed convex subset of H, F : C × C → R be a
bifunction and S : C → C be a k-strict pseudo-contractive mapping for some
0 ≤ k < 1 such that F (S) ∩ EP (F ) 6= ∅. Let {xn} and {un} be sequences
generated initially by an arbitrary element x1 ∈ H and then by

(1.5)

{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0 for all y ∈ C,

xn+1 = αnun + (1− αn)Sun for n ≥ 1.

Then, the sequences {xn} and {un} converge weakly to an element of F (S) ∩
EP (F ) under some parameters controlling conditions.
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Further more, they obtained a necessary and sufficient condition for strong
convergence of iterative scheme (1.5) under some controlling conditions.

Motivated and inspired by the facts above, in this paper, we propose a new
iterative scheme for finding a common element of the set of solutions of EP
(1.1) and set of fixed points of an asymptotically k-strict pseudo-contractive
mapping with sequence {γn} defined in the setting of a real Hilbert spaces.
Our results are more general than the results of [2].

2. Preliminaries

We will use the notation:
1. ⇀ for weak convergence and → for strong convergence;
2. ωw(xn) = {x : ∃ xni ⇀ x} denotes the weak ω−limit set of {xn}.
Throughout the paper, we consider H is a Hilbert space with inner product

〈·, ·〉 and norm ‖ · ‖, respectively, C is a nonempty closed convex subset of H.
Let us recall the following definitions and results which will be used in the

sequel.

Lemma 2.1 ([11]). Let H be a real Hilbert space. Then the following hold:
(a) ‖x− y‖2 = ‖x‖ − ‖y‖2 − 2〈x− y, y〉,∀x, y ∈ H;
(b) ‖(1 − t)x + ty‖2 = (1 − t)‖x‖2 + t‖y‖2 − t(1 − t)‖x − y‖2, ∀t ∈ [0, 1],

∀x, y ∈ H;
(c) If {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

‖xn − x‖2 + ‖x− y‖2, ∀y ∈ H.

Lemma 2.2 ([13]). Let {δn}, {βn} and {γn} be three sequences of nonnegative
numbers satisfying the recursive inequality:

(2.1) δn+1 ≤ βnδn + γn for all n ∈ N
if βn ≥ 1,

∑∞
n=1(βn − 1) < ∞ and

∑∞
n=1 γn < ∞. Then limn→∞ δn exists.

Let C be a nonempty closed convex subset of H. Then, for any x ∈ H, there
exists a unique nearest point in C, denoted by PCx such that

(2.2) ‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

Such a PC is called the metric projection of H onto C. It is known that PC is
nonexpansive.

Lemma 2.3 ([11]). Let C be nonempty closed convex subset of a real Hilbert
space H, given x ∈ H and z ∈ C, then z = PCx if and only if

(2.3) 〈x− z, y − z〉 ≤ 0, ∀y ∈ C.

For solving the equilibrium problem for a bifunction F : C × C → R, let us
assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;
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(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) For each x, y, z ∈ C, limt→0 F (tz + (1− t)x, y) ≤ F (x, y);
(A4) For each x ∈ C, the function y 7→ F (x, y) is convex and lower semicon-

tinuous.
The following lemma appeared implicitly in [1].

Lemma 2.4 (Also see [4, 15]). Let C be a nonempty closed convex subset of
H and let F : C × C → R be a bifunction satisfying (A1) − (A4). Let r > 0
and x ∈ H, then, there exists z ∈ C such that

(2.4) F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0 for all y ∈ C.

Lemma 2.5 ([4]). Assume F : C × C → R satisfies (A1) − (A4). For r > 0
and x ∈ H, define a mapping Tr : H → C as follows:

(2.5) Tr(x) = {z ∈ C : F (x, y) +
1
r
〈y − z, z − x〉 ≥ 0 for all y ∈ C}

for all z ∈ H. Then, the following hold:
1. Tr is single-valued;
2. Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;
3. F (Tr) = EP (F );
4. EP (F ) is closed and convex.

In order to obtain the following lemma, we firstly introduced the notion
of uniformly L-Lipschtizan. A mapping T : C → C is said to be uniformly
L-Lipschtizan, if there exists a constant L > 0 such that

(2.6) ‖Tnx− Tny‖ ≤ L‖x− y‖ ∀x, y ∈ C, n ≥ 1.

Lemma 2.6 ([10]). Let C be a nonempty closed convex subset of a real Hilbert
space H and S : C → C be a self-mapping of C.

(i) If S is an asymptotically k-strict pseudo-contractive mapping with se-
quence {γn}, then S satisfies the uniformly L-Lipschtizan condition

‖Tnx− Tny‖ ≤ L‖x− y‖,

where L := k+
√

1+M
1−k , M := supn{γn}.

(ii) If S is an asymptotically k-strict pseudo-contractive mapping with se-
quence {γn}, then the mapping I − S is demiclosed (at 0). That is, if {xn}
is a sequence in C such that xn ⇀ x̃ ∈ C and lim supm→∞ lim supn→∞ ‖(I −
Sm)xn‖ → 0, then (I − S)x̃ = 0.

(iii) If S is an asymptotically k-strict pseudo-contractive mapping with se-
quence {γn}, then the fixed point set F (S) of S is closed and convex.
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Proof. (i) For x, y ∈ C, we have

‖Tnx− Tny‖2 ≤ (1 + γn)‖x− y‖2 + k‖x− Tnx− (y − Tny)‖2
≤ (1 + γn)‖x− y‖2 + k(‖x− y‖+ ‖Tnx− Tny‖)2
≤ (1 + k + γn)‖x− y‖2

+ k(2‖x− y‖‖Tnx− Tny‖+ ‖Tnx− Tny‖2).
It gives us that

(2.7) (1−k)‖Tnx−Tny‖2−2k‖x−y‖‖Tnx−Tny‖−(1+k+γn)‖x−y‖2 ≤ 0.

Solving this quadratic inequality, we obtain that

(2.8) ‖Tnx− Tny‖ ≤ k +
√

1 + γn − kγn

1− k
‖x− y‖.

Let Ln = k+
√

1+γn−kγn

1−k and M = supn{γn}, we have

‖Tnx− Tny‖ ≤ k +
√

1 + γn − kγn

1− k
‖x− y‖

≤ k +
√

1 + M

1− k
‖x− y‖.

Hence (i) holds.
As for (ii), (iii), T.-H. Kim and H.-K. Xu [10] have given good proof. ¤

Let K be a nonempty closed subset of a Banach space E. A mapping
T : K → K is said to be semicompact if for any bounded sequence {xn} in K
such that ‖xn−Txn‖ → 0 (as n →∞), there exists a subsequence {xni} ⊂ {xn}
such that xni → x? ∈ K (as i →∞).

We propose an iterative scheme for finding a common element of the set of
solutions of EP (1.1) and the set of fixed points of an asymptotically k-strict
pseudo-contractive mapping with sequence {γn} in the setting of real Hilbert
spaces. We also prove the weak and strong convergences of the sequences
generated by our iterative scheme.

3. Weak convergence results

Theorem 3.1. Let C be a nonempty closed convex subset of H, F : C×C →∞
be a bifunction satisfying (A1) − (A4) and S : C → C be an asymptotically k-
strict pseudo-contractive mapping with sequence {γn} for some 0 ≤ k < 1 such
that F (S)∩EP (F ) 6= ∅. Let {xn} and {un} be sequences generated initially by
an arbitrary element x1 ∈ H and then by

(3.1)

{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ C,

xn+1 = αnun + (1− αn)Snun, ∀ n ≥ 1,

where {αn}, {γn} and {rn} satisfy the following conditions:
(1) {αn} ⊂ [α, β] for some α, β ∈ (k, 1);
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(2) {γn} ∈ [0,∞) with limn→∞ γn = 0 and
∑∞

n=1(1− αn)γn < ∞;
(3) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0.

Then, the sequences {xn} and {un} converge weakly to an element of F (S) ∩
EP (F ).

Proof. We divide the proof into six steps.
Step 1. limn→∞ ‖xn − p‖ exists for each p ∈ F (S) ∩ EP (F ).

Indeed, let p be an arbitrary element of F (S) ∩ EP (F ). Then from the
definition of Tr in Lemma 2.5, we have un = Trnxn, and therefore

(3.2) ‖un − p‖ = ‖Trn
xn − Trn

p‖ ≤ ‖xn − p‖, ∀ n ≥ 1.

Since T is an asymptotically k-strict pseudo-contractive mapping, we have
(3.3)
‖xn+1 − p‖2 = ‖αnun + (1− αn)Snun − p‖2

= αn‖un − p‖2 + (1− αn)‖Snun − p‖2
− αn(1− αn)‖un − Snun‖2

≤ αn‖un − p‖2 + (1− αn)[(1 + γn)‖un − p‖2 + k‖un − Snun‖2]
− αn(1− αn)‖un − Snun‖2

= [1 + (1− αn)γn]‖un − p‖2 − (αn − k)(1− αn)‖un − Snun‖2.
Since k < α ≤ αn ≤ β < 1 for all n ≥ 1, we get

(3.4) ‖xn+1 − p‖2 ≤ [1 + (1− αn)γn]‖un − p‖2.
And since [1 + (1− αn)γn] ≥ 1, we have

‖xn+1 − p‖2 ≤ [1 + (1− αn)γn]‖un − p‖2 ≤ [1 + (1− αn)γn]2‖un − p‖2.
So we obtain the following inequality,

(3.5) ‖xn+1 − p‖ ≤ [1 + (1− αn)γn]‖un − p‖.
Since {αn} ⊂ [α, β] for some α, β ∈ (k, 1),

∑∞
n=1(1 − αn)γn < ∞ and by

Lemma 2.2, we obtain that limn→∞ ‖xn−p‖ exists and hence {xn} is bounded.
Step 2. limn→∞ ‖un − Snun‖ = 0.

We can suppose limn→∞ ‖xn − p‖ = r for some r ≥ 0. It’s easy to see from
(3.3) that
(3.6)

(α− k)(1− β)‖un − Snun‖2 ≤ (αn − k)(1− αn)‖un − Snun‖2
≤ [1 + (1− αn)γn]‖xn − p‖2 − ‖xn+1 − p‖2.

This implies that limn→∞ ‖un − Snun‖ = 0.

Step 3. limn→∞ ‖xn − Snxn‖ = 0.

Note that
un − xn+1 = (1− αn)(un − Snun).
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Now, we compute

(3.7)

‖xn+1 − Snxn+1‖2
= ‖αn(un − Snxn+1) + (1− αn)(Snun − Snxn+1)‖2
= αn‖un − Snxn+1‖2 + (1− αn)‖Snun − Snxn+1‖2
− αn(1− αn)‖un − Snun‖2

≤ αn‖(un − xn+1) + (xn+1 − Snxn+1)‖2
− αn(1− αn)‖un − Snun‖2
+ (1− αn)[(1 + γn)‖un − xn+1‖2
+ k‖(un − Snun)− (xn+1 − Snxn+1)‖2]

= αn(‖un − xn+1‖2 + ‖xn+1 − Snxn+1‖2
− 2〈un − xn+1, xn+1 − Snxn+1〉)− αn(1− αn)‖un − Snun‖2
+ (1− αn)[(1 + γn)‖un − xn+1‖2 + k(‖un − Snun‖2
+ ‖xn+1 − Snxn+1‖2 − 2〈un − Snun, xn+1 − Snxn+1〉)]

= [1 + (1− αn)γn]‖un − xn+1‖2 + αn‖xn+1 − Snxn+1‖2
+ 2αn〈un − xn+1, xn+1 − Snxn+1〉 − αn(1− αn)‖un − Snun‖2
+ k(1− αn)(‖un − Snun‖2 + ‖xn − Snxn+1‖2
− 2〈un − Snun, xn+1 − Snxn+1〉)

= (1− αn)[1 + (1− αn)γn]‖un − Snun‖2
+ αn‖xn+1 − Snxn+1‖2
+ 2αn(1− αn)〈un − Snun, xn+1 − Snxn+1〉
− αn(1− αn)‖un − Snun‖2
+ k(1− αn)(‖un − Snun‖2 + ‖xn − Snxn+1‖2
− 2〈un − Snun, xn+1 − Snxn+1〉)

= [αn + k(1− αn)]‖xn+1 − Snxn+1‖2
+ [1 + (1− αn)γn + k(1− αn)]‖un − Snun‖2
+ 2(αn − k)(1− αn)〈un − Snun, xn+1 − Snxn+1〉)

≤ [αn + k(1− αn)]‖xn+1 − Snxn+1‖2
+ [1 + (1− αn)(γn + k)]‖un − Snun‖2
+ 2(αn − k)(1− αn)‖un − Snun‖‖xn+1 − Snxn+1‖.

Putting an = ‖xn+1−Snxn+1‖ and bn = ‖un−Snun‖ for each n ≥ 1, we have

(3.8) (1− αn)(1− k)a2
n ≤ [1 + (1− αn)(γn + k)]b2

n + 2(αn − k)(1− αn)anbn.
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Since 1− αn > 0 and we may assume bn > 0, we can divide the last inequality
by (1− αn)b2

n and also let ζn = an

bn
to get the quadratic inequality for ζn,

(3.9) (1− k)ζ2
n − 2(αn − k)ζn − (

1
1− αn

+ γn + k) ≤ 0.

Solving this inequality, we obtain

ζn ≤
αn − k +

√
(αn − k)2 + (1− k)( 1

1−αn
+ γn + k)

1− k
.

Since k < α ≤ αn ≤ β < 1 for all n ≥ 1, and limn→∞ γn = 0, therefore, there
exists a constant M > 0 such that

ζn ≤
αn − k +

√
(αn − k)2 + (1− k)( 1

1−αn
+ γn + k)

1− k
< M.

Therefore, an < Mbn, i.e.,

(3.10) ‖xn+1 − Snxn+1‖ < M‖un − Snun‖,
since limn→∞ ‖un − Snun‖ = 0, we obtain

lim
n→∞

‖xn − Snxn‖ = 0.

Step 4. We claim that limn→∞ ‖xn − un‖ = 0.

Let p be an arbitrary element of F (S) ∩ EP (F ). Then as above un = Trxn

and we have
‖un − p‖2 = ‖Trxn − Trp‖2

≤ 〈Trxn − Trp, xn − p〉
= 〈un − p, xn − p〉

=
1
2
(‖un − p‖2 + ‖xn − p‖2 − ‖xn − un‖)

and hence
‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖.

So from (3.4), we have

‖xn+1 − p‖2 ≤ [1 + (1− αn)γn]‖un − p‖2
≤ [1 + (1− αn)γn](‖xn − p‖2 − ‖xn − un‖2)

and hence

[1 + (1− αn)γn]‖xn − un‖2 ≤ [1 + (1− αn)γn]‖xn − p‖2 − ‖xn+1 − p‖2
and divide the last inequality by [1 + (1− αn)γn], we get

‖xn − un‖2 ≤ ‖xn − p‖2 − 1
1 + (1− αn)γn

‖xn+1 − p‖2.

So, from the existence of limn ‖xn − p‖ and 1 + (1− αn)γn 6= 0, we have

‖xn − un‖ → 0 as n →∞.
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Step 5. We claim that ωw(xn) ⊂ F (S) ∩ EP (F ), where

ωw(xn) = {x : ∃ xni ⇀ x}.
Firstly, we prove that ωw(xn) ⊂ EP (F ).
Since {xn} is bounded and H is reflexive, ωw(xn) is nonempty. Let w ∈

ωw(xn) be an arbitrary element. Then there exists a subsequence xni of {xn}
converging weakly to w. Hence, from the result of Step 4, we know that uni ⇀
w. As ‖Snun − un‖ → 0, we obtain that Snuni

⇀ w. Since un = Trn
xn, we

have

F (un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ C.

From (A2), we also get

1
rn
〈y − un, un − xn〉 ≥ F (y, un),

and hence

〈y − uni ,
uni − xni

rni

〉 ≥ F (y, uni).

Since uni
−xni

rni
→ 0 and uni ⇀ w, from (A4) we have

0 ≥ F (y, w), ∀ y ∈ C.

For t ∈ (0, 1] and y ∈ C, let yt = ty + (1 − t)w. Since y ∈ C and w ∈ C, we
have yt ∈ C and hence F (yt, w) ≤ 0. So, from (A1) and (A4) we have

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, w) ≤ tF (yt, y),

and hence 0 ≤ F (yt, y). From (A3), we have

0 ≤ F (w, yt), ∀ y ∈ C,

and hence w ∈ EP (F ).
Secondly, we show that ωw(xn) ⊂ F (S).
Since {xn} is bounded, we can define a function f on H by

f(x) = lim sup
n→∞

‖xn − x‖2, x ∈ H.

By Lemma 2.1(c), the weak convergence xn → w implies that

f(x) = f(w) + ‖x− w‖2 for all x ∈ H.

In particular, for each m ≥ 1,

(3.11) f(Smw) = f(w) + ‖Smw − w‖2.
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On the other hand, since S is an asymptotically k-strict pseudo-contractive
mapping, we get

f(Smw) = lim sup
n→∞

‖xn − Smw‖2

= lim sup
n→∞

‖(xn − Smxn) + (Smxn − Smw)‖2

= lim sup
n→∞

(‖xn − Smxn‖2 + ‖Smxn − Smw‖2

+ 2〈xn − Smxn, Smxn − Smw〉)
≤ lim sup

n→∞
‖xn − Smxn‖(‖xn − Smxn‖+ 2Lm‖xn − w‖)

+ lim sup
n→∞

[(1 + γm)‖xn − w‖2 + k‖(xn − Smxn)− (w − Smw)‖2].

Taking lim supm→∞ on both sides and observing the facts that that limm→∞ γm

= 0 and lim supm→∞ lim supn→∞ ‖xn − Smxn‖ = 0, we derive that

(3.12) lim sup
m→∞

f(Smw) ≤ lim sup
n→∞

‖xn − w‖2 + k lim sup
m→∞

‖w − Smw‖.

Combining (3.11) and (3.12), we conclude that lim supm→∞ ‖w − Smw‖2 = 0.
That is, Smw → w, hence Sw = w, i.e., ωw(xn) ⊂ F (S).
Step 6. We claim that {xn} and {un} converge weakly to an element of
F (S) ∩ EP (F ).

Indeed, to verify that the assertion is valid, it is sufficient to show that
ωw(xn) is a single-point set. We take w1, w2 ∈ ωw(xn) arbitrarily and let
{xki} and {xmj} be subsequences of {xn} such that xki ⇀ w1 and xmj ⇀ w2,
respectively. Since limn→∞ ‖xn − p‖ exists for each p ∈ F (S) ∩ EP (F ) and
since w1, w2 ∈ F (S) ∩ EP (F ), by Lemma 2.1(c), we obtain

lim
n→∞

‖xn − w1‖2 = lim
j→∞

‖xmj − w1‖2

= lim
j→∞

‖xmj − w2‖2 + ‖w2 − w1‖

= lim
i→∞

‖xki − w2‖2 + ‖w2 − w1‖
= lim

i→∞
‖xki − w1‖2 + 2‖w2 − w1‖

= lim
n→∞

‖xn − w1‖2 + 2‖w2 − w1‖.

Hence w1 = w2. This shows that ωw(xn) is a single-point set. This completes
the proof. ¤

By Theorem 3.1, we derive the following result.

Corollary 3.2 ([2]). Let C be a nonempty closed convex subset of H, F :
C ×C → R be a bifunction satisfying (A1)− (A4) and S : C → C be a k-strict
pseudo-contractive mapping for some 0 ≤ k < 1 such that F (S) ∩ EP (F ) 6= ∅.
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Let {xn} and {un} be sequences generated initially by an arbitrary element
x1 ∈ H and then by{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0 for all y ∈ C,

xn+1 = αnun + (1− αn)Sun for n ≥ 1,

where {αn} and {rn} satisfy the following conditions:
(1) {αn} ⊂ [α, β] for some α, β ∈ (k, 1);
(2) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0.

Then, the sequences {xn} and {un} converge weakly to an element of F (S) ∩
EP (F ).

4. Strong convergence results

Theorem 4.1. Let C be a nonempty closed convex subset of H, F : C×C →∞
be a bifunction satisfying (A1) − (A4) and S : C → C be an asymptotically k-
strict pseudo-contractive mapping with sequence {γn} for some 0 ≤ k < 1 such
that F (S)∩EP (F ) 6= ∅. Let {xn} and {un} be sequences generated initially by
an arbitrary element x1 ∈ H and then by

(4.1)

{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ C,

xn+1 = αnun + (1− αn)Snun, ∀ n ≥ 1,

where {αn}, {γn} and {rn} satisfy the following conditions:
(1) {αn} ⊂ [α, β] for some α, β ∈ (k, 1);
(2) {γn} ∈ [0,∞) with limn→∞ γn = 0 and

∑∞
n=1(1− αn)γn < ∞;

(3) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0.
Then, the sequences {xn} and {un} converge strongly to an element of F (S)∩
EP (F ) if and only if lim infn→∞ d(xn, F (S)∩EP (F )) = 0, where d(xn, F (S)∩
EP (F )) denotes the metric distance from the point xn to F (S) ∩ EP (F ).

Proof. From the proof of Theorem 3.1, we know that limn→∞ ‖xn − p‖ exists
for each p ∈ F (S)∩EP (F ) and limn→∞ ‖un−xn‖ = 0. Hence {xn} is bounded.

The necessity is apparent, we show the sufficiency. Suppose that

lim
n→∞

‖un − xn‖ = 0.

Taking the infimum all p ∈ F (S) ∩ EP (F ) from (3.5), we have

d(xn+1, F (S) ∩ EP (F )) ≤ [1 + (1− αn)γn]d(xn, F (S) ∩ EP (F ))

and hence limn→∞ d(xn, F (S)∩EP (F )) exists (the proof of this result is similar
to the proof of limn→∞ ‖xn − p‖ in Theorem 3.1). Thus, we have

lim
n→∞

d(xn, F (S) ∩ EP (F )) = lim inf
n→∞

d(xn, F (S) ∩ EP (F )) = 0.

Now, it follows by (3.5) that for all p ∈ F (S) ∩ EP (F ),

(4.2) ‖xn+m−xn‖ ≤ ‖xn+m−p‖+‖xn−p‖ ≤
m−1∏

i=0

[1+(1−αn+i)γn+i]‖xn−p‖.
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Since
∑∞

n=1(1−αn)γn < ∞ and 1−β < 1−αn < 1−α, there exists a positive
constant N , such that (1− αn)γn ≤ 1

n for all n ≥ N . Thus we can obtain the
following inequality by (4.2),

(4.3) ‖xn+m − xn‖ ≤ ‖xn+m − p‖+ ‖xn − p‖ ≤
m−1∏

i=0

[1 +
1

n + i
]‖xn − p‖.

Since
∏m−1

i=0 [1 + 1
n+i ]‖xn − p‖ ≤ (1 + 1

n )m‖xn − p‖ and limn→∞(1 + 1
n )n = e,

so we get
m−1∏

i=0

[1 + (1− αn+i)γn+i] ≤ e.

Taking the infimum over all p ∈ F (S) ∩ EP (F ) from (4.2), we obtain

‖xn+m − xn‖ ≤ ed(xn, F (S) ∩ EP (F )).

Thus {xn} is a Cauchy sequence. Suppose xn → x̂ ∈ H. Then

d(x̂, F (S) ∩ EP (F )) = lim
n→∞

d(xn, F (S) ∩ EP (F )) = 0.

As S an asymptotically k-strict pseudo-contractive mapping with sequence
{γn}, we know from Lemma 2.6(iii) that F (S) is closed and convex. Note
that EP (F ) is closed according to Lemma 2.5. Thus F (S) ∩ EP (F ) is closed.
Consequently, x̂ ∈ F (S) ∩ EP (F ). In view of limn→∞ ‖un − xn‖ = 0, we
conclude that both sequences {xn} and {un} converge strongly to an element
x̂ of F (S) ∩ EP (F ). ¤

Theorem 4.2. Let C be a nonempty closed convex subset of H, F : C ×C →
R be a bifunction satisfying (A1) − (A4) and S : C → C be a semicompact
asymptotically k-strict pseudo-contractive mapping with sequence {γn} for some
0 ≤ k < 1 such that F (S) ∩ EP (F ) 6= ∅. Let {xn} and {un} be sequences
generated initially by an arbitrary element x1 ∈ H and then by

{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ C,

xn+1 = αnun + (1− αn)Snun, ∀ n ≥ 1,

where {αn}, {γn} and {rn} satisfy the following conditions:
(1) {αn} ⊂ [α, β] for some α, β ∈ (k, 1);
(2) {γn} ∈ [0,∞) with limn→∞ γn = 0 and

∑∞
n=1(1− αn)γn < ∞;

(3) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0.
Then, {xn} and {un} converge strongly to an element of F (S) ∩ EP (F ).

Proof. From the proof of Theorem 3.1, we know that limn→∞ ‖xn − p‖ exists
for each p ∈ F (S) ∩ EP (F ) and limn→∞ ‖xn − Snxn‖ = 0. Thus {xn} is
bounded. Then from the semicompactness of S, we conclude that there exists
a subsequence {xni} of {xn} such that

xni → q ∈ H as i →∞.
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Hence, xni
⇀ q. Clearly, repeating the same argument as in the proof of

Theorem 3.1, we must have q ∈ F (S)∩EP (F ). This implies that limn→∞ ‖xn−
q‖ exists. Consequently, we have

lim
n→∞

‖xn − q‖ = lim
i→∞

‖xni
− q‖ = 0.

Since ‖un−xn‖ → 0 as n →∞, we deduce that both the sequences xn and un

converge strongly to a point q ∈ F (S) ∩ EP (F ). ¤

In particular, every k-strict pseudo-contractive mappings are asymptotically
k-strict pseudo-contractive mappings with sequence {γn}, where γn ≡ 0, and
n = 1. According to Theorem 4.1 and Theorem 4.2, we derive the following
results easily.

Corollary 4.3 ([2]). Let C be a nonempty closed convex subset of H, F :
C ×C → R be a bifunction satisfying (A1)− (A4) and S : C → C be a k-strict
pseudo-contractive mapping for some 0 ≤ k < 1 such that F (S) ∩ EP (F ) 6= ∅.
Let {xn} and {un} be sequences generated initially by an arbitrary element
x1 ∈ H and then by

{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0 for all y ∈ C,

xn+1 = αnun + (1− αn)Sun for n ≥ 1,

where {αn} and {rn} satisfy the following conditions:
(1) {αn} ⊂ [α, β] for some α, β ∈ (k, 1);
(2) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0.

Then, the sequences {xn} and {un} converge strongly to an element of F (S)∩
EP (F ) if and only if lim infn→∞ d(xn, F (S)∩EP (F )) = 0, where d(xn, F (S)∩
EP (F )) denotes the metric distance from the point xn to F (S) ∩ EP (F ).

Corollary 4.4 ([2]). Let C be a nonempty closed convex subset of H, F :
C × C → R be a bifunction satisfying (A1) − (A4) and S : C → C be a
semicompact k-strict pseudo-contractive mapping with sequence {γn} for some
0 ≤ k < 1 such that F (S) ∩ EP (F ) 6= ∅. Let {xn} and {un} be sequences
generated initially by an arbitrary element x1 ∈ H and then by

{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ C,

xn+1 = αnun + (1− αn)Sun, ∀ n ≥ 1,

where {αn} and {rn} satisfy the following conditions:
(1) {αn} ⊂ [α, β] for some α, β ∈ (k, 1);
(2) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0.

Then, {xn} and {un} converge strongly to an element of F (S) ∩ EP (F ).
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