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LIMIT THEOREMS FOR MARKOV PROCESSES
GENERATED BY ITERATIONS OF RANDOM MAPS

OESOOK LEE

1. Introduction

Let p(z,dy) be a transition probability function on (S,p), where
S is a complete separable metric space. Then a Markov process X,
which has p(z,dy) as its transition probability may be generated by
random iterations of the form X, = f(X,,Eu41), where &, is a
sequence of independent and identically distributed random variables

(See, e.g.,Kifer(1986), Bhattacharya and Waymire(1990))

In this paper we consider the case f(z,€¢) = f.(x). We consider
a discrete time Markov process {X,} on a complete separable met-
ric space(S, p), represented as X, = I',T',_;---T'1 Xy, where X is a
given random variable with values on S and {I',} is a sequence of in-
dependent and identically distributed random maps on $ into itself.
Also, Xy and {I',,} are independent. It is assumed that there exist a
positive integer mg and a measurable function G on (™) such that
Yy € T p(yz,vy) < G(v)piz,y) and ElG(Tm, ---T1)] < 1. {X,}
obtained by random affine maps on R" can be treated as a special
case of this type. It is proved that under an additional assumption,
there exists a unique invariant probability =, where p™(z, dy) converges
weakly to 7(dy) an n — oc for every z € S. It is also shown that a
functional central limit theorem and a strong law of large numbers hold
for Lipschitzian functions. Theorems are proved without mentioning
irreducibility or any kind of mixing type conditions. This generalizes an
earlier results of Bhattacharya and Lee(1988), in which successive com-
positions of random maps were assumed to be contractions eventually.
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The case that I' has only finitely many maps has been studied by El-
ton(1987) and Barnsley and Elton(1988). Laskot and Rudnicki(1995)

considered the case of my = 1.

2. Main Results

Let (S, p) be a complete separable metric space and B(S) its Borel
sigma field. Let I' be a set of continuous maps on S into itself. Let C be
the sigma field on I" such that the map (v, z) — ¥(#) is a measurable
function on (I'x S,C®B(S)). Let P be a probability mneasure on (', C).
On some probability space(Q, F, Q) define a sequen:e of independent

and identically distributed random maps I'y, 'y, ... with common dis-
tribution P and a random variable X with values in S independent
of the sequence {I',}. Define X; = I''Xy, ..., X, = X,y =

[, ---T'1Xo. Here, we write vz for the value of the map v € T at «r,
and 5, ---v; for the composition of the maps v;,...,v,. Then X, is a
Markov process with transition probability p(z, dy) given by

ple,B) = P({y €T :v(z) € B}), re S, BeB(S)

p"(x,dy) denotes the n-step transition probability function, i.e. the
distribution of I',T,, ¢ ---T'yz. We shall write X () for X, with X, =
x. Note that I',,-- - I';z has the same distribution as 'y ---T',,z.

Write I'™ for the usual Cartesian product I' x I’ < .-+ x T, and let
P™ denote the product probablilty on (I'™,C™). Let T''™) he the set
of all compositions v, - -y, with v; € I',1 < ¢ < ra. For the sigma
field C(™ on T™) take the class of all sets B whose inverse under the

map (Yi....,Ym) —> Ym -1 are in C™. Let P("™) be the induced
p (7 i Y
probability measure on (I'(™) C(™)),

We make the following assumptions:

There exist x¢ € S, a positive integer /¢ and a nonnegative measurable
function G : ['™o) — R such that
(A1) Vy e D) oy, vy) < G(y)p(z.y), Yo,y =S
(A2) A :=E[G(Ty, Ty <1
(A3) for each r > 0, SUP (2,20)<r Ep(Xn(x),2¢) < 00,
n=12...,mg.
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THEOREM 2.1. Assume for some z¢ ,positive integer my and a non-
negative measurable function G on T'(™®) (A1)-(A3) hold. Then there
exists a unique invariant probability n(dy) for p(z,dy), and p"(z,dy)
converges weakly to n(dy) for every x € S.

First let us show a lemma.

LEMMA 2.1. If the hypotheses of the theorem 2.1 hold, then

(2.1) sup Epl Xn(x¢),20) < co

and

(2.2) sup Ep(Xn(2), Xn(y)) -0
z,yeC

for every compact set C, as n — oo.

Proof. We define H,(z) := Ep(Xp(z),2¢),n =1,2,... and let n >
1 be such that Nmg < n < (N +1)m, for some nonnegative integer V.
Then by using the assumption that {I',} is independent and identically
distributed, we have
Hn(ir'O) = Ep(rl T an[]nrO)
< E[P(F] o Tpxg, Ly I‘moﬂfn) +p(Ly-- 'FmoI03IU)]
< E[G(Fl e Fmo \)] Ep(rmo+l T 'I’n‘TOv IU) + K
< A [ )\Ep(r2nlo+] s r\nl‘(),.l'g) + [\’] + K
AW AN D) KR
K1-x"t

—_

IA A

for all n, where K = sup; ¢, m, Hnl(T0) < ox, and hence (2.1) holds.
Fix a compact set C in S. For every two points z,y € C
Ep(Xn(2),Xa(y)) = Ep(Ty---Tya, Ty Thy)
S A EP(Pn~mo ot lea Fn—mo e Fly)

AN (Ho Ny (2) + HuoNmo ()
2]\71/\N,

(2.3)

IA

IA
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where A’} := sup]<n<m0 supreCH (ir) < oo, by the assumption (A3).
Letting n — oo N - 00 in (2.3). we have (2.2).

On the set of P(S) of all probability measures or. (S,B(S)) define
the bounded Lipschitzian distance

lw—v s
=sop{ [ fau= [ gavl o) fios s <1 (e ePis)

whcreHfHOO:sup{]f(r)I:xES} | f1lr= sup{|f(x) vl play):
¢ #y € S} Itis known that (P(S L llBr)isa Colnplete me tu( space
and || . || g, metrizes the weak-star topology on P(S) (Dudley(1968)).

Proof of theorem 2.1. For any z,.r, € C,C is a compact set, we
have

(2.4)
| p™(z1,dy) — p" (x4, dy) HB]
_f’up{,Ef ‘Xr I’] E(f()(n »UZ ! ” f ”oof 1 ” fHI< 1}
< Efp (Xn(:rl)..’(n(. DA 50 as o

by (2.2). Now writing B(xq, M) for the ball of radius M centered at
Loy

| 2" ™ (20, dy) — p™ (0, dy) lBL

S E[/)(Fl ’ "rnrn—i—l te 'Fn rmd 0. FI(JOfSFn«’»‘()) A 2]
S E[{p(r] "'FnFn—i»l . "F;1+nl-TO»F1 "'Fn KO) A 2}

Lo g o ymze x0) > MY

(2.5) + E{p(Ty - Tolpr o Togmao, Ty Trag) A 2)
I{P(rn+1“'I‘n+mr(,,fo)gj\1}}
<2Q(p(Tat1 -+ Toymag,2y) > M)

+ sup E[p([’l Dy, Dy Thag) A 2}
yEB(xy M)

for every M > 0. By (2.1) and Chebyshev’s inequality, for given e > 0,
we may choose M = M, such that,

(26) Q(p(FTH—I v 'Fn+m?r03~7‘0) 2 f\’ff) < 6/4, \V/W« = 1,2.
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From (2.2), supyep(oo M) Eo(T'v - Tay, T Trzo) = 0 as n — oc,
which together with (2.5),(2.6) implies for all sufficient large n,

I p" ™z, dy) — p™ (2o dy) lBL < e, Ym=12....

Completeness of (P(S), || . ||p1) ensures the existence of a probablilty
measure 7 such that

(2.7) | p"(z0,dy) — 7(dy) |[BL = 0 as n — oc.

(2.4) and (2.7) imply that p™(r,dy) — w(dy) weakly for every r € S.
Since {X,} is Feller, 7 is the unique invariant probablilty.

REMARK. Suppose (A1)-(A3) are satisfied for my = 1. Then (A3)
holds if Ep(Tyzq,2¢) < o0, since Ep(X (z),2¢) < Ap(x,xo)+Ep(T 20,
:l‘o).

THEOREM 2.2. Let the hypotheses of theorem 2.1 hold and let © be

the unique invariant probability. Then whatever the initial distribution
18,

n—1
(2.8) %—Z f(X;) — /f dr ae. . n-— o
1=0 v

for any Lipschitz function f on S.
Proof. Let f be Lipschitzian, i.e. |f(z)— f(y)| < Mp(z,y)Vz,y € S
for some M > 0. Then [ |f|dm < oo, since [ p(x,z0)dm{z) < oo.

Let {)Zn} be the process with initial invariant distribution 7, then by
Birkhoff’s Ergodic theorem,

1 n—1 _
;;Zf(;)(l) — /de( a.e..
1=0

Let u be any probability measure on S, and let {X, : n > 0} be the
process with initial distribution p and define

Xo(w) if weQ,
0 if we—Q,

x3(e) = {
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where Q. = {w : p(Xo(w),z9) < r}. Let the distribution of X§ be p”
and let {X] :n > 0} be the process with initial distribution u”. Now
given € > 0, set A, = {w: [f(X]) - X)) > €}. Then by similar
manner used in (2.3),

M o
P(A"ln) .<_ _‘Ep(“X:L',-}‘:”)

M =
< /\ Eﬂ( X :', —Nmg> ‘Yn — Nmyg )

where N is the integer part of —% Moreover for 0 < ¢ <1y — 1.

Ep(XI.X,) < /E/)(AYz’(T)J’(i)/lr(dJ)+/E/)(X (y1,vo)w(dy) < Iy

Ky = sup sup Ep(Xi(:r,Jan)+/p(y,a'>)7r(dy) < o

plre,og)<r 0<e<mg —1

S P, < 2

(2.9) n=0 N=

IA

mn ~1
N A

g Ep(X]..
M
< —mohyil—- M < .
F

By Borel-Cantelli lemma.

n-—1
1
2.1 - (X7 __+/ I as.
(2.10) TL;f( 7 | fdr  as
But L5V f(X7) = LS A(X) on @, and P(,) — 1 as r - oo,

which, together with (2.10), completes the proof.

Assume the hypotheses of theorem 2.1 hold and 7 is the unique
invariant probability measure for p(r,dy). Let T be the transition
operator on L%(S, ),

flx) —/f (r,dy), feL*S ).
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Then (T f)(z) = [ f(y)p™(z,dy). Let I denoie the identity operator.
We denote the L*-norm on L*(S,7) by || . || Write f = [ fdr. Fix
f € L?(S, ). For each positive integer n, write

(2.11)

[ni]

E +(t — m)(f( Cing1) = O] (£>0),

n

m|»4

where [nt] is the integer part of nt.

If, for fixed f, Y, (.) converges in distribution to a Brownian mo-
tion,then we say that the functional central limit theorem(FCLT') holds
for the function f.

THEOREM 2.3. Under the nypotheses of the theorem 2.1 ,

(1) if the initial distribution of X, is 7, then for every bounded
Lipschitzian f, FCLT holds with mean zero and variance pa-
rameter || g |3 — || Tg |3, where (T~ I)g = f ~ f.

(2) if ,in addition, [ p*(z, ro)dr < oc, then for every Lipschitzian,
FCLT holds.

(3) convergences in (1) and (2) hold regardless of the initial dis-
tribution.

Proof. Let f be Lipschitzian on S, |f(z) ~ f{y)| < Mp(x,y),Vz.y €
S. Note that

Ep("x'nmo(x)a Xnmo (y)) S /\nf)(x'/ y)

To prove (1) and (2),it 1s enough to show that for each case, f €
L3S, x) and 327 || T™(f — f) |la< oo {See Bhattacharya and
Lee(1988)).

(1) Assume that for some L > 0, |f(z)] < L,Vz € S. Then clearly
fe L%S,n) and

[T ( f - f)(z)’2 < QL(/ |Ef(Xnmo(x)) — Ef(Xan(y))|7T(dy))

AN

2LM/Ep(Xan(:r),Xnmo(y))W(dy)

(7AN

2LJM/\”/p(‘x,y)7r(dy).
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If we let a:= [ p(z,z¢)dn(z), then a < oo and

| T (f — f) J2< 2LMA7 / / oz, y)w(dy) 7(dx)
— (4aLM A"

Since T is a contraction, we get
” Tn7no+k(f - f) HZSH Tnmo(f - f) “2'/ k= 07 17 2~ ceea T — 17

and therefore

STNTYF = F) 1< S mo | T (f — £) Iz

n=( n=0

< @Lz’\l)lﬂmo

(1—vX)

2) f € L* S, x) follows from the assumption b := [ p?(z,xq)n(dz)
< 0.

LT f) 2< MZ//Ep wona ). X (4))(dy ) (dr)

<MA2"// (r,y)m(dy))?n(d=)

< M*(b+ 3a*)2*".

Therefore we have

S NI = £ < My/b o+ 3aZmg(1— A) !

n=9_

(3) Let {X,} be the process whose initial distribution is u, ¢ is an
arbitrary probability measure on (S, B(S)) and let Y,,i.) be the process
defined by (2.11). Let Y,7(.) and Y, (-) be the corresponding processes
with {X,} replaced by {X7} and {X,} respectively. Here {XT} and
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{Xn} are defined in the proof of theorem 2.2. Then we have, for fixed
Lipschitzian f,

E(OIQ%IY (t) = Ya(t)])

< Mn~ Zmer X:) < Mn TmoKy(1— A\~

which goes to 0 as n — oc. From the fact that Y7(¢) = Y¥,,(¢) on Q,,
and P(£2,) — 1 as r — oo, the conclusion follows.

COROPPARY 2.1. In addition to the assumptions of theorem 2.1,
assume E[G*(T p,, ---T1)] < 1 and SUP} < < me E[p*(X (2¢). 2¢)] < 00.
Then FCLT holds for every Lipschitzian function.

Proof. By theorem 2.3, it remains to show that lim sup F[p?( X ,.(zy),
xg)] < oc, which is obtained by the following inequality:

(E[0*(Xn(20),20)]) '

< E[p*(Ty...Tyeg, Ty ... Tyzo)])

+ (E[p*(T, .. -I‘rngiroﬂfoml/2
HE[p*(T gt - Tnzo,20)])V 2+ Ky

< (n[m%] +o4np+ 1)Ky < K3(1—n)7 1,

IN

where 772 - E[Gl( : l)} 1 and I\3 - &‘up1§n§7no E[pz(){n(l"O)s
1‘0)] < oC.
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