• Title/Summary/Keyword: wafer inspection

검색결과 59건 처리시간 0.027초

반도체 전공정의 하드마스크 스트립 검사시스템 개발 (Development of Hard Mask Strip Inspection System for Semiconductor Wafer Manufacturing Process)

  • 이종환;정성욱;김민제
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.55-60
    • /
    • 2020
  • The hard mask photo-resist strip inspection system for the semiconductor wafer manufacturing process inspects the position of the circuit pattern formed on the wafer by measuring the distance from the edge of the wafer to the strip processing area. After that, it is an inspection system that enables you to check the process status in real time. Process defects can be significantly reduced by applying a tester that has not been applied to the existing wafer strip process, edge etching process, and wafer ashing process. In addition, it is a technology for localizing semiconductor process inspection equipment that can analyze the outer diameter of the wafer and the state of pattern formation, which can secure process stability and improve wafer edge yield.

광학스캐닝 메커니즘 및 근적외선 카메라 광학계를 이용한 태양전지 웨이퍼 검사장치 개발 (Development of Inspection System With Optical Scanning Mechanism and Near-Infrared Camera Optics for Solar Cell Wafer)

  • 김경범
    • 반도체디스플레이기술학회지
    • /
    • 제11권3호
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, inspection system based on optical scanning mechanism is designed and developed for solar cell wafer. It consists of optical scanning mechanism, NIR camera optics, machinery and control system, algorithm of defect detection and software. Optical scanning mechanism is composed of geometrical camera optics and structured hybrid illumination system. It is used to inspection of surface defects. NIR camera optics is used for inspection of defects inside solar cell wafer. It is shown that surface and internal micro defects can be detected in developed inspection system for solar cell wafer.

Bare Wafer Inspection using a Knife-edge Test

  • Lee, Jun-Ho;Kim, Yong-Min;Kim, Jin-Seob;Yoo, Yeong-Eun
    • Journal of the Optical Society of Korea
    • /
    • 제11권4호
    • /
    • pp.173-176
    • /
    • 2007
  • We present a very simple and efficient bare-wafer inspection method using a knife-edge test. The wafer front surface and inner structures are inspected simultaneously. The wafer front surface is inspected visually using a knife-edge test while the inner structure is simultaneously inspected by a camera in the infrared region with a single white-light source. This paper presents a laboratory implementation of the test method with some experimental results.

Development of Wafer Bond Integrity Inspection System Based on Laser Transmittance

  • Jang, Dong-Young;Ahn, Hyo-Sok;Mehdi, Sajadieh.S.M.;Lim, Young-Hwan;Hong, Seok-Kee
    • 마이크로전자및패키징학회지
    • /
    • 제17권2호
    • /
    • pp.29-33
    • /
    • 2010
  • Among several critical topics in semiconductor fabrication technology, particles in addition to bonded surface contaminations are issues of great concerns. This study reports the development of a system which inspects wafer bond integrity by analyzing laser beam transmittance deviations and the variations of the intensity caused by the defect thickness. Since the speckling phenomenon exists inherently as long as the laser is used as an optical source and it degrades the inspection accuracy, speckle contrast is another obstacle to be conquered in this system. Consequently speckle contrast reduction methods were reviewed and among the all remedies have been established in the past 30 years the most adaptable solution for inline inspection system is applied. Simulation and subsequently design of experiments has been utilized to discover the best solution to improve irradiance distribution and detection accuracy. Comparison between simulation and experimental results has been done and it confirms an outstanding detection accuracy achievement. Bonded wafer inspection system has been developed and it is ready to be implemented in FAB in the near future.

칼날 측정법을 이용한 베어 웨이퍼 검사 방법 (Bare-ware inspection method using knife-edge optical test)

  • 이준호;김용민;김진섭;황병문
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2007년도 하계학술발표회 논문집
    • /
    • pp.65-66
    • /
    • 2007
  • We present a new simple and fast bare-wafer inspection method. This method inspects the wafer front surface and inner structures simultaneously. The wafer surface is inspected using a knife-edge test in visible while the inner structure is inspected by a looking-through camera in infrared, at the same time and with a single white-light source. This paper presents a laboratory implementation of the test method with some experimental results.

  • PDF

반도체 웨이퍼 고속 검사를 위한 GPU 기반 병렬처리 알고리즘 (The GPU-based Parallel Processing Algorithm for Fast Inspection of Semiconductor Wafers)

  • 박영대;김준식;주효남
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1072-1080
    • /
    • 2013
  • In a the present day, many vision inspection techniques are used in productive industrial areas. In particular, in the semiconductor industry the vision inspection system for wafers is a very important system. Also, inspection techniques for semiconductor wafer production are required to ensure high precision and fast inspection. In order to achieve these objectives, parallel processing of the inspection algorithm is essentially needed. In this paper, we propose the GPU (Graphical Processing Unit)-based parallel processing algorithm for the fast inspection of semiconductor wafers. The proposed algorithm is implemented on GPU boards made by NVIDIA Company. The defect detection performance of the proposed algorithm implemented on the GPU is the same as if by a single CPU, but the execution time of the proposed method is about 210 times faster than the one with a single CPU.

태양광 웨이퍼의 결함검출을 위한 자동 정밀검사 시스템 개발 (Development of Automatic Precision Inspection System for Defect Detection of Photovoltaic Wafer)

  • 백승엽
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.666-672
    • /
    • 2011
  • In this paper, we describes the development of automatic inspection system for detecting the defects on photovoltaic wafer by using machine vision. Until now, The defect inspection process was manually performed by operators. So these processes caused the produce of poorly-made articles and inaccuracy results. To improve the inspection accuracy, the inspection system is not only configured, but the image processing algorithm is also developed. The inspection system includes dimensional verification and pattern matching which compares a 2-D image of an object to a pattern image the method proves to be computationally efficient and accurate for real time application and we confirmed the applicability of the proposed method though the experience in a complex environment.

반도체 절단 공정의 웨이퍼 자동 정렬에 관한 연구 (A study on the automatic wafer alignment in semiconductor dicing)

  • 김형태;송창섭;양해정
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.105-114
    • /
    • 2003
  • In this study, a dicing machine with vision system was built and an algorithm for automatic alignment was developed for dual camera system. The system had a macro and a micro inspection tool. The algorithm was formulated from geometric relations. When a wafer was put on the cutting stage within certain range, it was inspected by vision system and compared with a standard pattern. The difference between the patterns was analyzed and evaluated. Then, the stage was moved by x, y, $\theta$ axes to compensate these differences. The amount of compensation was calculated from the result of the vision inspection through the automatic alignment algorithm. The stage was moved to the compensated position and was inspected by vision for checking its result again. Accuracy and validity of the algorithm was discussed from these data.