• Title/Summary/Keyword: variational inequality problems

Search Result 77, Processing Time 0.035 seconds

A PARALLEL HYBRID METHOD FOR EQUILIBRIUM PROBLEMS, VARIATIONAL INEQUALITIES AND NONEXPANSIVE MAPPINGS IN HILBERT SPACE

  • Hieu, Dang Van
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.373-388
    • /
    • 2015
  • In this paper, a novel parallel hybrid iterative method is proposed for finding a common element of the set of solutions of a system of equilibrium problems, the set of solutions of variational inequalities for inverse strongly monotone mappings and the set of fixed points of a finite family of nonexpansive mappings in Hilbert space. Strong convergence theorem is proved for the sequence generated by the scheme. Finally, a parallel iterative algorithm for two finite families of variational inequalities and nonexpansive mappings is established.

A GENERAL ITERATIVE METHOD BASED ON THE HYBRID STEEPEST DESCENT SCHEME FOR VARIATIONAL INCLUSIONS, EQUILIBRIUM PROBLEMS

  • Tian, Ming;Lan, Yun Di
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.603-619
    • /
    • 2011
  • To the best of our knowledge, it would probably be the first time in the literature that we clarify the relationship between Yamada's method and viscosity iteration correctly. We design iterative methods based on the hybrid steepest descent algorithms for solving variational inclusions, equilibrium problems. Our results unify, extend and improve the corresponding results given by many others.

A VISCOSITY APPROXIMATIVE METHOD TO CES$\`{A}$RO MEANS FOR SOLVING A COMMON ELEMENT OF MIXED EQUILIBRIUM, VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS

  • Jitpeera, Thanyarat;Katchang, Phayap;Kumam, Poom
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.227-245
    • /
    • 2011
  • In this paper, we introduce a new iterative method for finding a common element of the set of solutions for mixed equilibrium problem, the set of solutions of the variational inequality for a ${\beta}$inverse-strongly monotone mapping and the set of fixed points of a family of finitely nonexpansive mappings in a real Hilbert space by using the viscosity and Ces$\`{a}$ro mean approximation method. We prove that the sequence converges strongly to a common element of the above three sets under some mind conditions. Our results improve and extend the corresponding results of Kumam and Katchang [A viscosity of extragradient approximation method for finding equilibrium problems, variational inequalities and fixed point problems for nonexpansive mapping, Nonlinear Analysis: Hybrid Systems, 3(2009), 475-86], Peng and Yao [Strong convergence theorems of iterative scheme based on the extragradient method for mixed equilibrium problems and fixed point problems, Mathematical and Computer Modelling, 49(2009), 1816-828], Shimizu and Takahashi [Strong convergence to common fixed points of families of nonexpansive mappings, Journal of Mathematical Analysis and Applications, 211(1) (1997), 71-83] and some authors.

CONVERGENCE OF PARALLEL ITERATIVE ALGORITHMS FOR A SYSTEM OF NONLINEAR VARIATIONAL INEQUALITIES IN BANACH SPACES

  • JEONG, JAE UG
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.61-73
    • /
    • 2016
  • In this paper, we consider the problems of convergence of parallel iterative algorithms for a system of nonlinear variational inequalities and nonexpansive mappings. Strong convergence theorems are established in the frame work of real Banach spaces.

AN ITERATIVE METHOD FOR NONLINEAR MIXED IMPLICIT VARIATIONAL INEQUALITIES

  • JEONG, JAE UG
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.391-399
    • /
    • 2004
  • In this paper, we develop an iterative algorithm for solving a class of nonlinear mixed implicit variational inequalities in Hilbert spaces. The resolvent operator technique is used to establish the equivalence between variational inequalities and fixed point problems. This equivalence is used to study the existence of a solution of nonlinear mixed implicit variational inequalities and to suggest an iterative algorithm for solving variational inequalities. In our results, we do not assume that the mapping is strongly monotone.

  • PDF

PROPER EFFICIENCY FOR SET-VALUED OPTIMIZATION PROBLEMS AND VECTOR VARIATIONAL-LIKE INEQUALITIES

  • Long, Xian Jun;Quan, Jing;Wen, Dao-Jun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.777-786
    • /
    • 2013
  • The purpose of this paper is to establish some relationships between proper efficiency of set-valued optimization problems and proper efficiency of vector variational-like inequalities under the assumptions of generalized cone-preinvexity. Our results extend and improve the corresponding results in the literature.

A Solution of Variational Inequalities and A Priori Error Estimations in Contact Problems with Finite Element Method (접촉문제에서의 변분부등식의 유한요소해석과 A Priori 오차계산법)

  • Lee, Choon-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2887-2893
    • /
    • 1996
  • Governing equations infrictional contact problems are introduced using variational inequality formulations which are regularized to overcome the diffculties of non-differentiability of the friction functional. Also finite element approximations and a priori error estimations are derived based on those formulations. Numerical simulations are performed illustrating the theoretical results.

CONSTRUCTION OF A SOLUTION OF SPLIT EQUALITY VARIATIONAL INEQUALITY PROBLEM FOR PSEUDOMONOTONE MAPPINGS IN BANACH SPACES

  • Wega, Getahun Bekele
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.595-619
    • /
    • 2022
  • The purpose of this paper is to introduce an iterative algorithm for approximating a solution of split equality variational inequality problem for pseudomonotone mappings in the setting of Banach spaces. Under certain conditions, we prove a strong convergence theorem for the iterative scheme produced by the method in real reflexive Banach spaces. The assumption that the mappings are uniformly continuous and sequentially weakly continuous on bounded subsets of Banach spaces are dispensed with. In addition, we present an application of our main results to find solutions of split equality minimum point problems for convex functions in real reflexive Banach spaces. Finally, we provide a numerical example which supports our main result. Our results improve and generalize many of the results in the literature.

SOLVING QUASIMONOTONE SPLIT VARIATIONAL INEQUALITY PROBLEM AND FIXED POINT PROBLEM IN HILBERT SPACES

  • D. O. Peter;A. A. Mebawondu;G. C. Ugwunnadi;P. Pillay;O. K. Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.205-235
    • /
    • 2023
  • In this paper, we introduce and study an iterative technique for solving quasimonotone split variational inequality problems and fixed point problem in the framework of real Hilbert spaces. Our proposed iterative technique is self adaptive, and easy to implement. We establish that the proposed iterative technique converges strongly to a minimum-norm solution of the problem and give some numerical illustrations in comparison with other methods in the literature to support our strong convergence result.

WEAK AND STRONG CONVERGENCE THEOREMS FOR A SYSTEM OF MIXED EQUILIBRIUM PROBLEMS AND A NONEXPANSIVE MAPPING IN HILBERT SPACES

  • Plubtieng, Somyot;Sombut, Kamonrat
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.375-388
    • /
    • 2013
  • In this paper, we introduce an iterative sequence for finding solution of a system of mixed equilibrium problems and the set of fixed points of a nonexpansive mapping in Hilbert spaces. Then, the weak and strong convergence theorems are proved under some parameters controlling conditions. Moreover, we apply our result to fixed point problems, system of equilibrium problems, general system of variational inequalities, mixed equilibrium problem, equilibrium problem and variational inequality.