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A PARALLEL HYBRID METHOD FOR EQUILIBRIUM

PROBLEMS, VARIATIONAL INEQUALITIES AND

NONEXPANSIVE MAPPINGS IN HILBERT SPACE

Dang Van Hieu

Abstract. In this paper, a novel parallel hybrid iterative method is pro-
posed for finding a common element of the set of solutions of a system
of equilibrium problems, the set of solutions of variational inequalities
for inverse strongly monotone mappings and the set of fixed points of
a finite family of nonexpansive mappings in Hilbert space. Strong con-
vergence theorem is proved for the sequence generated by the scheme.
Finally, a parallel iterative algorithm for two finite families of variational
inequalities and nonexpansive mappings is established.

1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm
‖·‖. Let C be a nonempty closed convex subset of H . Let A : C → H be a
(nonlinear) operator. The variational inequality problem is to find p∗ ∈ C such
that

(1) 〈Ap∗, p− p∗〉 ≥ 0, ∀p ∈ C.

The set of solutions of (1) is denoted by V I(A,C).
A mapping S : C → C is said to be nonexpansive if ‖Sx− Sy‖ ≤ ‖x− y‖

for all x, y ∈ C. The set of fixed points of S is denoted by

F (S) = {x ∈ C : S(x) = x} .

For finding a common element of the set of fixed points of a nonexpansive
mapping and the set of solutions of the variational inequality for an α-inverse
strongly monotone mapping in Hilbert space, Takahashi and Toyoda [17] pro-
posed the following iterative method: x0 ∈ C and

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn)
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for n = 0, 1, 2, . . ., where λn ∈ [a, b] for some a, b ∈ (0, 2α) and αn ∈ [c, d]
for some c, d ∈ (0, 1). They proved that the sequence {xn} converges weakly
to z ∈ F (S) ∩ V I(A,C), where z = limn→∞ PF (S)∩V I(A,C)xn. To obtain
strong convergence, Iiduka and Takahashi [11] proved the following convergence
theorem:

Theorem 1.1 ([11]). Let C be a closed convex subset of a real Hilbert space

H. Let A be an α-inverse-strongly-monotone mapping of C into H and let S be

a nonexpansive nonself-mapping of C into H such that F (S) ∩ V I(A,C) 6= ∅.
Suppose x1 = x ∈ C and {xn} is given by

xn+1 = PC (αnxn + (1− αn)SPC(xn − λnAxn))

for every n = 1, 2, . . . , where {αn} is a sequence in [0, 1) and {λn} is a sequence

in [0, 2α]. If {αn} and {λn} are chosen so that λn ∈ [a, b] for some a, b with

0 < a < b < 2α,

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞,
∞∑

n=1

|αn+1 − αn| < ∞,
∞∑

n=1

|λn+1 − λn| < ∞,

then {xn} converges strongly to PF (S)∩V I(A,C)x.

Let f be a bifunction from C × C to the set of real numbers R. The equi-
librium problem for f is to find an element x̂ ∈ C, such that

(2) f(x̂, y) ≥ 0, ∀y ∈ C.

The set of solutions of the equilibrium problem (2) is denoted by EP (f). Equi-
librium problems are generalized by several problems such as: optimization
problems, variational inequalities, etc. In recent years, several methods have
been proposed for finding a solution of equilibrium problem (2) in Hilbert space
[5, 7, 16, 18, 19].

In 2010, for finding a common element of the set of fixed points of non-
expansive mappings, the set of the solutions of variational inequalities for α-
inverse strongly monotone operators, and the set of the solutions of equilibrium
problems in Hilbert space, Saeidi [12] proposed the following iterative method:
x0 ∈ H and





un = T fM
rM,n

· · ·T f1
r1,n

xn,

vn = PC(I − λN,nAN ) · · ·PC(I − λ1,nA1)un,

yn = (1− αn)xn + αnWnvn,

Cn = {v ∈ H : ‖v − yn‖ ≤ ‖v − xn‖} ,

Qn = {v ∈ H : 〈x0 − xn, xn − v〉 ≥ 0} ,

xn+1 = PCn∩Qn
x0, n ≥ 1,

where Wn is the nonexpansive mapping, so-called the W -mapping [14], and
T f
r x := u is the unique solution to the regularized equilibrium problem

f(u, y) +
1

r
〈y − u, u− x〉 ≥ 0, ∀y ∈ C.
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Clearly, Saeidi’s algorithm is inherently sequential. Hence, when the numbers
of operators N and bifunctions M are large, it is costly on a single processor.

Very recently, Anh and Chung [2] have proposed the following parallel hybrid
iterative method for finding an element of the set of fixed points of a finite family

of relatively nonexpansive mappings {Si}
N
i=1:





x0 ∈ C0 := C, Q0 := C,

yin = αnxn + (1− αn)Sixn, i = 1, . . . , N,

in := argmax
{∥∥yin − xn

∥∥ : i = 1, . . . , N
}
, ȳn := yinn ,

Cn = {v ∈ C : ‖v − ȳn‖ ≤ ‖v − xn‖} ,

Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0} ,

xn+1 = PCn∩Qn
x0, n ≥ 0.

This algorithm was extended by Anh and Hieu [3] for a finite family of asymp-
totically quasi φ-nonexpansive mappings in Banach spaces.

In this paper, motivated by the results of Takahashi et al. [11, 17], Saeidi
[12], Anh and Chung [2], we propose the following novel parallel hybrid iterative
method for finding a common element of the set of solutions of a system of

equilibrium problems for bifunctions {fl}
K
l=1, the set of solutions of variational

inequalities for α-inverse strongly monotone mappings {Ak}
M

k=1 and the set of

fixed points of a finite family of nonexpansive mappings {Si}
N

i=1:

(3)





x0 ∈ H, C0 = Q0 = C,

zln = T fl
rn
xn, l = 1, . . . ,K,

ln := argmax
{∥∥zln − xn

∥∥ : l = 1, . . . ,K
}
, z̄n := zlnn ,

uk
n = PC(z̄n − λAkz̄n), k = 1, . . . ,M,

kn := argmax
{∥∥uk

n − xn

∥∥ : k = 1, . . . ,M
}
, ūn := ukn

n ,

yin = αnūn + (1− αn)Siūn, i = 1, . . . , N,

in := argmax
{∥∥yin − xn

∥∥ : i = 1, . . . , N
}
, ȳn := yinn ,

Cn = {v ∈ H : ‖v − ȳn‖ ≤ ‖v − z̄n‖ ≤ ‖v − xn‖} ,

Qn = {v ∈ H : 〈x0 − xn, xn − v〉 ≥ 0} ,

xn+1 = PCn∩Qn
x0, n ≥ 0,

where λ ∈ (0, 2α) and the control parameter sequences {αn} , {rn} satisfy some
conditions. Clearly, in the method (3), at nth step, we can calculate the in-
termediate approximations zln in parallel. Then, among all zln, the element z̄n
which is farest from xn is selected. Using the element z̄n to find the approxima-
tions uk

n in parallel. After that, we chose the element ūn that is farest from xn

among uk
n. Similarly, yin are calculated in parallel and ȳn is determined. Based

on ȳn, z̄n, xn, the closed and convex subsets Cn, Qn are constructed. Finally,
the next approximation xn+1 is determined as the projection of x0 onto the
intersection Cn ∩Qn of two closed and convex subsets Cn and Qn.
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This paper is organized as follows: In Section 2, we collect some definitions
and results for researching into the convergence of the proposed method. Sec-
tion 3 deals with the convergence analysis of the method and its applications.

2. Preliminaries

In what follows, we review some definitions and results, which are employed
in this paper. We refer the reader to [11]. We write xn → x to indicate that the
sequence {xn} converges strongly to x and x ⇀ x implies that {xn} converges
weakly to x.

A mapping A : C → H is called α-inverse strongly monotone if there exists
a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α ‖Ax−Ay‖2

for all x, y ∈ C and η-strongly monotone if there exists η > 0 such that

〈Ax−Ay, x− y〉 ≥ η ‖x− y‖2 .

It is well known that if A is η-strongly monotone and L-Lipschitz, i.e.,

‖Ax −Ay‖ ≤ L ‖x− y‖

for all x, y ∈ C, then A is η/L2-inverse strongly monotone. If A : C → H is
α-inverse strongly monotone, then A is 1/α-Lipschitz continuous and I − λA
is nonexpansive of C onto H , where λ ∈ (0, 2α). If T is nonexpansive, then
A = I − T is 1/2-inverse strongly monotone and V I(A,C) = F (T ).

For every x ∈ H , the element PCx is defined by

PCx = argmin {‖y − x‖ : y ∈ C} .

Since C is a nonempty closed and convex subset of H , PCx is existent and
unique. Mapping PC : H → C is called the projection of H onto C. It is also
known that PC satisfies

(4) 〈PCx− PCy, x− y〉 ≥ ‖PCx− PCy‖
2
.

This implies that PC is 1-inverse strongly monotone and for all x ∈ C, y ∈ H ,
we have

(5) ‖x− PCy‖
2
+ ‖PCy − y‖2 ≤ ‖x− y‖2 .

Moreover, z = PCx if only if

(6) 〈x− z, z − y〉 ≥ 0, ∀y ∈ C,

and this implies that p∗ ∈ V I(A,C) if only if

(7) p∗ = PC(p
∗ − λAp∗), λ > 0.

We have the following result of the convexity and closedness of V I(A,C).

Lemma 2.1 ([15]). Let C be a nonempty, closed convex subset of a Banach

space E and A be a monotone, hemicontinuous operator of C into E∗. Then

V I(A,C) = {u ∈ C : 〈v − u,Av〉 ≥ 0 for all v ∈ C} .
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Next, for solving the equilibrium problem (2), we assume that the bifunction
f satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) For all x, y, z ∈ C,

lim
t→0+

sup f(tz + (1− t)x, y) ≤ f(x, y);

(A4) For all x ∈ C, f(x, ·) is convex and lower semicontinuous.

The following results concern with the bifunction f :

Lemma 2.2 ([7]). Let C be a closed and convex subset of Hilbert space H, f
be a bifunction from C × C to R satisfying the conditions (A1)-(A4) and let

r > 0, x ∈ H. Then, there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Lemma 2.3 ([7]). Let C be a closed and convex subset of a Hilbert space H,

f be a bifunction from C ×C to R satisfying the conditions (A1)-(A4). For all

r > 0 and x ∈ H, define the mapping

T f
r x = {z ∈ C : f(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Then the following hold:
(B1) T f

r is single-valued;
(B2) T f

r is a firmly nonexpansive, i.e., for all x, y ∈ H,

||T f
r x− T f

r y||
2 ≤ 〈T f

r x− T f
r y, x− y〉;

(B3) F (T f
r ) = EP (f);

(B4) EP (f) is closed and convex.

Lemma 2.4 ([9]). Assume that T : C → C is a nonexpansive mapping. If T
has a fixed point, then

(i) F (T ) is closed convex subset of H.

(ii) I−T is demiclosed, i.e., whenever {xn} is a sequence in C weakly con-

verging to some x ∈ C and the sequence {(I − T )xn} strongly converges

to some y, it follows that (I − T )x = y.

3. Main results

In this section, we shall prove the convergence theorem for the method (3).
Putting

F =
(
∩K
l=1EP (fl)

)⋂(
∩N
i=1F (Si)

)⋂(
∩M
k=1V I(Ak, C)

)

and assume that F is the nonempty set. We also propose a simpler algorithm
than the algorithm (3) for a system of variational inequalities and a finite family
of nonexpansive mappings.
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Theorem 3.1. Let {Ak}
M

k=1 : C → H be a finite family of α-inverse strongly

monotone operators, {Si}
N
i=1 : C → C be a finite family of nonexpansive map-

pings, and {fl}
K

l=1 be a finite family of bifunctions from C ×C to R satisfying

the conditions (A1)-(A4). Assume that the set F is nonempty, λ ∈ (0; 2α) and
the control parameter sequences {αn} and {rn} satisfy the following conditions:

(i) {αn} ⊂ [0, 1], lim supn→∞ αn < 1;
(ii) {rn} ⊂ [d,∞) for some d > 0.

Then the sequence {xn} is generated by algorithm (3) converges strongly to

PFx0.

Proof. We divide the proof of Theorem 3.1 into seven steps.
Step 1. We show that F,Cn, Qn are closed convex subsets ofH . By Lemmas

2.1, 2.3, and 2.4, EP (fl), V I(Ak, C), F (Si) are closed and convex. Hence, F
is closed and convex. From the definitions of Cn, Qn, we see that Qn is closed
and convex and Cn is closed. Now, we show that Cn is convex. Indeed, the
inequality ‖v − ȳn‖ ≤ ‖v − xn‖ is equivalent to

〈v, xn − ȳn〉 ≤
1

2

(
‖xn‖

2 − ‖ȳn‖
2
)
.

This implies that Cn is convex for all n ≥ 0, and so ΠCn∩Qn
x0 and ΠFx0 are

well-defined.
Step 2. We show that F ⊂ Cn∩Qn for all n ≥ 0. We have yin = αnxn−(1−

αn)Siūn. For every u ∈ F , by the convexity of ‖·‖2 and the nonexpansiveness
of Sin , we obtain

‖u− ȳn‖
2
= ‖u− αnūn − (1− αn)Sin ūn‖

2

= ‖u‖2 − 2αn 〈u, ūn〉 − 2(1− αn) 〈u, Sin ūn〉

+ ‖αnxn + (1− αn)Sin ūn‖
2

≤ ‖u‖2 − 2αn 〈u, ūn〉 − 2(1− αn) 〈u, Sin ūn〉+ αn ‖xn‖
2

+ (1− αn) ‖Sin ūn‖
2

= αn ‖u− ūn‖
2
+ (1− αn) ‖u− Sin ūn‖

2

≤ αn ‖u− ūn‖
2
+ (1− αn) ‖u− ūn‖

2

= ‖u− ūn‖
2
.(8)

From (4), the definition of ūn, and the nonexpansiveness of PC(I−λAkn
), T fl

rn
,

we have

‖u− ūn‖ = ‖PC(I − λAkn
)u − PC(I − λAkn

)z̄n‖

≤ ‖u− z̄n‖

= ||T
fln
rn u− T

fln
rn xn||

≤ ||u− xn||.(9)
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From (8) and (9),

(10) ‖u− ȳn‖ ≤ ‖u− z̄n‖ ≤ ‖u− xn‖ .

This implies that F ⊂ Cn for all n ≥ 0. Next, we show that F ⊂ Cn ∩ Qn

for all n ≥ 0 by the induction. Indeed, we have that C0 = Q0 = C and
F ⊂ C = C0 ∩ Q0. Assume that F ⊂ Cn ∩ Qn for some n ≥ 0. From
xn+1 = PCn∩Qn

x0 and (6), we get

〈xn+1 − z, x0 − xn+1〉 ≥ 0

for all z ∈ Cn ∩ Qn. Since F ⊂ Cn ∩ Qn, 〈xn+1 − z, x0 − xn+1〉 ≥ 0 for all
z ∈ F . This together with the definition of Qn+1 implies that F ⊂ Qn+1.
Hence F ⊂ Cn ∩Qn for all n ≥ 0.

Step 3. We show that
∥∥xn − yin

∥∥ → 0 and
∥∥xn − zln

∥∥ → 0 as n → ∞ for all
i = 1, 2, . . .N , l = 1, 2, . . . ,K. From the definition of Qn and (6), we see that
xn = PQn

x0. Therefore, for every u ∈ F ⊂ Qn, we get

(11) ‖xn − x0‖
2 ≤ ‖u− x0‖

2 − ‖u− xn‖
2 ≤ ‖u− x0‖

2
.

This implies that the sequence {xn} is bounded. From (9),
{
uk
n

}
is bounded.

By the nonexpansiveness of Si, the sequence
{
Siu

k
n

}
,
{
yin

}
are also bounded.

We have xn+1 = PCn∩Qn
x0 ∈ Qn, xn = PQn

x0, from (5) we get

(12) ‖xn − x0‖
2 ≤ ‖xn+1 − x0‖

2 − ‖xn+1 − xn‖
2 ≤ ‖xn+1 − x0‖

2
.

Hence the sequence {‖xn − x0‖} is nondecreasing, and so there exists the limit
of the sequence {‖xn − x0‖}. From (12) we obtain

‖xn+1 − xn‖
2 ≤ ‖xn+1 − x0‖

2 − ‖xn − x0‖
2
.

Taking n → ∞, we obtain

(13) lim
n→∞

‖xn+1 − xn‖ = 0.

From xn+1 = PCn∩Qn
x0 ∈ Cn and the definition of Cn, we have that

‖xn+1 − ȳn‖ ≤ ‖xn+1 − z̄n‖ ≤ ‖xn+1 − xn‖ .

Therefore,

(14) lim
n→∞

‖xn+1 − ȳn‖ = lim
n→∞

‖xn+1 − z̄n‖ = 0.

By (13), (14) and the estimate ||xn− ȳn|| ≤ ||xn−xn+1||+ ||xn+1− ȳn||, we get

lim
n→∞

‖xn − ȳn‖ = 0.

From the definition of in, we obtain

(15) lim
n→∞

∥∥xn − yin
∥∥ = 0

for all i = 1, 2, . . . , N . By arguing similarly to (15), we obtain

(16) lim
n→∞

∥∥xn − zln
∥∥ = 0, l = 1, 2, . . . ,K.
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Step 4. We show that limn→∞ ‖xn − Sixn‖ = 0. From yin = αnxn + (1 −
αn)Siūn, we obtain

∥∥xn − yin
∥∥ = (1− αn) ‖xn − Siūn‖ .

Therefore,

‖xn − Sixn‖ ≤ ‖xn − Siūn‖+ ‖Siūn − Sixn‖

≤ ‖xn − Siūn‖+ ‖ūn − xn‖

=
1

1− αn

∥∥xn − yin
∥∥+ ‖ūn − xn‖ .(17)

For every u ∈ F , from (4) and (6), we see that

2 ‖u− ūn‖
2 = 2 ‖PC(u− λAkn

u)− PC(z̄n − λAkn
z̄n)‖

2

≤ 2 〈(u− λAkn
u)− (z̄n − λAkn

z̄n), u − ūn〉

= ||(u − λAkn
u)− (z̄n − λAkn

z̄n)||
2 + ||u− ūn||

2

− ||(u− λAkn
u)− (z̄n − λAkn

z̄n)− (u− ūn) ||
2

≤ ||u− z̄n||
2 + ||u− ūn||

2 − || (z̄n − ūn)− λ(Akn
z̄n −Akn

u)||2

= ||u− z̄n||
2 + ||u− ūn||

2 − ||ūn − z̄n||
2 − λ2||Akn

z̄n −Akn
u||2

+ 2λ 〈z̄n − ūn, Akn
z̄n −Akn

u〉 .

Therefore,

‖u− ūn‖
2 ≤ ||u− z̄n||

2 − ||ūn − z̄n||
2 + 2λ 〈z̄n − ūn, Akn

z̄n −Akn
u〉

≤
(
||u− z̄n||

2 − ||ūn − z̄n||
2
)
+ 2λ||ūn − z̄n||||Akn

z̄n −Akn
u||

≤
(
||u− xn||

2 − ||ūn − z̄n||
2
)
+ 2λ||ūn − z̄n||||Akn

z̄n −Akn
u||.(18)

From the convexity of ‖·‖2 and the nonexpansiveness of Si we have
∥∥u− yin

∥∥2 = ‖u− (αnūn + (1− αn)Siūn)‖
2

≤ αn ‖u− ūn‖
2
+ (1− αn) ‖u− Siūn‖

2

≤ αn ‖u− ūn‖
2
+ (1− αn) ‖u− ūn‖

2

= ‖u− ūn‖
2

= ‖PC(u − λAkn
u)− PC(z̄n − λAkn

z̄n)‖
2

≤ ‖(u− λAkn
u)− (z̄n − λAkn

z̄n)‖
2

= ‖λ(Akn
z̄n −Akn

u)− (z̄n − u)‖2

= λ2 ‖Akn
z̄n −Akn

u‖2 − 2λ 〈Akn
z̄n −Akn

u, z̄n − u〉+ ||z̄n − u||2

≤ ‖u− xn‖
2 − λ(2α− λ) ‖Akn

z̄n −Akn
u‖2 .(19)

This implies that

(20) λ(2α− λ) ‖Akn
z̄n −Akn

u‖2 ≤ ‖u− xn‖
2 −

∥∥u− yin
∥∥2

.
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We have∣∣∣‖u− xn‖
2 −

∥∥u− yin
∥∥2

∣∣∣ =
∣∣‖u− xn‖ −

∥∥u− yin
∥∥∣∣ (‖u− xn‖+

∥∥u− yin
∥∥)

≤
∥∥xn − yin

∥∥ (‖u− xn‖+
∥∥u− yin

∥∥) .
By the boundedness of {xn} ,

{
yin

}
and (15), we obtain

(21) ‖u− xn‖
2 −

∥∥u− yin
∥∥2 → 0.

The last relation and (20) imply that

(22) lim
n→∞

‖Akn
z̄n −Akn

u‖ = 0.

From (18) and (19), we obtain
∥∥u− yin

∥∥2 ≤ ‖u− ūn‖
2

≤
(
||u − xn||

2 − ||ūn − z̄n||
2
)
+ 2λ||ūn − z̄n||||Akn

z̄n −Akn
u||.

Therefore,

(23) ||ūn− z̄n||
2 ≤

(
‖u− xn‖

2 −
∥∥u− yin

∥∥2
)
+2λ||ūn−xn||||Akn

xn−Akn
u||.

From (21), (22), (23) and 0 < λ < 2α, we get

(24) lim
n→∞

‖z̄n − ūn‖ = 0.

Since ||xn − z̄n|| → 0 and ||xn − ūn|| ≤ ||xn − z̄n||+ ||z̄n − ūn||,

lim
n→∞

‖xn − ūn‖ = 0.

This together with (15), (17) implies that

(25) lim
n→∞

‖xn − Sixn‖ = 0

for all i = 1, 2, . . . , N . By the boundedness of {xn}, there exists a subsequence
{xm} of {xn} converging weakly to x̂ ∈ C. From (25) and Lemma 2.4, x̂ ∈

F (Si) for all i = 1, 2, . . . , N . Hence, x̂ ∈
⋂N

i=1 F (Ti).

Step 5. Now we show that x̂ ∈
⋂M

k=1 V I(Ak, C). Indeed, we have that

||uk
m − z̄m|| ≤ ||uk

m − xm||+ ||xm − z̄m||.

Therefore, ||uk
m − z̄m|| → 0 as m → ∞. Note that, we also have uk

m ⇀ x̂ and
z̄m ⇀ x̂ as m → ∞. We have

‖z̄m − PC(I − λAk)x̂‖
2 = ‖z̄m − x̂‖2 + 2 〈z̄m − x̂, x̂− PC(I − λAk)x̂〉

+ ‖x̂− PC(I − λAk)x̂‖
2
.(26)

Moreover, from uk
m = PC(I−λAk)z̄m and the nonexpansiveness of PC(I−λAk),

one has

‖z̄m − PC(I − λAk)x̂‖
2 ≤

(∥∥z̄m − uk
m

∥∥+ ‖PC(I − λAk)z̄m− PC(I− λAk)x̂‖
)2

≤
(∥∥z̄m − uk

m

∥∥+ ‖z̄m − x̂‖
)2

.(27)
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From (26), (27) we get

‖x̂− PC(I − λAk)x̂‖
2 ≤

∥∥z̄m − uk
m

∥∥2 + 2
∥∥z̄m − uk

m

∥∥ ‖z̄m − x̂‖

− 2 〈z̄m − x̂, x̂− PC(I − λAk)x̂〉 .

Letting m → ∞, we obtain

x̂ = PC(I − λAk)x̂.

By (7), x̂ ∈ V I(Ak, C) for all k = 1, 2, . . . ,M .

Step 6. We show that x̂ ∈
⋂K

l=1 EP (fl).

Note that limn→∞

∥∥zlm − xm

∥∥ = 0. This together rm ≥ d > 0 implies that

(28) lim
m→∞

∥∥zlm − xm

∥∥
rm

= 0.

We have that zlm = T fl
rm

xm, i.e.,

(29) fl(z
l
m, y) +

1

rm

〈
y − zlm, zlm − xm

〉
≥ 0 ∀y ∈ C.

From (29) and (A2), we get

(30)
1

rm

〈
y − zlm, zlm − xm

〉
≥ −fl(z

l
m, y) ≥ fk(y, z

l
m) ∀y ∈ C.

Taking m → ∞, by (28), (30) and (A4), we obtain

(31) fl(y, x̂) ≤ 0, ∀y ∈ C.

For 0 < t ≤ 1 and y ∈ C, putting yt = ty + (1 − t)x̂. Since y ∈ C and x̂ ∈ C,
yt ∈ C. Hence, for small sufficient t, from (A1), (A3) and (31), we have that

fl(yt, x̂) = fl(ty + (1 − t)x̂, x̂) ≤ 0.

By (A1), (A4), we have that

0 = fl(yt, yt)

= fl(yt, ty + (1 − t)x̂)

≤ tfl(yt, y) + (1− t)f(yt, x̂)

≤ tfl(yt, y).

Dividing both sides of the last inequality by t > 0, we obtain fl(yt, y) ≥ 0 for
all y ∈ C, i.e.,

fl(ty + (1− t)x̂, y) ≥ 0, ∀y ∈ C.

Taking t → 0+, from (A3), we get fl(x̂, y) ≥ 0, ∀y ∈ C and l = 1, 2, . . . ,K, i.e,
x̂ ∈ ∩K

l=1EP (fl). Therefore, x̂ ∈ F.
Step 7. We show that xn → PFx0. Setting w = PFx0. From (11), we get

‖xm − x0‖ ≤ ‖w − x0‖ .

By the lower weak continuity of ‖·‖ we have

‖x̂− x0‖ ≤ lim
m→∞

inf ‖xm − x0‖ ≤ lim
m→∞

sup ‖xm − x0‖ ≤ ‖w − x0‖ .
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By the definition of w, x̂ = w and limm→∞ ‖xm − x0‖ = ‖x̂− x0‖. This implies
that

lim
m→∞

‖xm‖ = ‖x̂‖ .

Therefore, limm→∞ xm = x̂. Assume that {xk} is an any subsequence of {xn}.
By arguing similarly to above proof, xk → PFx0 as k → ∞. Hence, xn → PFx0

as n → ∞. The proof of Theorem 3.1 is complete. �

Now, we consider the ill-posed system of the operator equations

(32) Ai(x) = 0, x ∈ H, i = 1, 2, . . . , N,

where Ai : H → H are possibly nonlinear operators on H . Let S denote by the
set of solutions of the system (32). An element x† is called x0-minimize norm
solution of the system (32) if x† ∈ S and satisfies

∥∥x† − x0

∥∥ = min {‖z − x0‖ : z ∈ S} .

If x0 = 0, then x† is said simply to be the minimize norm solution. Several
sequential and parallel iterative regularization methods [1, 2, 6, 8, 10] have
been proposed for finding a solution of the system (32). Using Theorem 3.1,
we also obtain the following result:

Corollary 3.2. Let Ai : H → H, i = 1, 2, . . . , N be a finite family of α-inverse
strongly monotone mappings with the set of solutions S being nonempty. The

sequence {xn} is generated by the following manner:




x0 ∈ H,

in := argmax {‖Aixn‖ : i = 1, . . . , N} , Ān := Ain

Cn =
{
v ∈ H :

〈
v, Ānxn

〉
≤

〈
xn − µĀnxn, Ānxn

〉}
,

Qn = {v ∈ H : 〈v, x0 − xn〉 ≤ 〈xn, x0 − xn〉} ,

xn+1 = PCn∩Qn
x0, n ≥ 0,

where µ ∈ (0, α). Then {xn} converges strongly to the x0-minimize norm

solution x† of the system (32).

Proof. Putting C = H , λ = 2µ, αn = 0 for all n ≥ 0, Si = I, fl(x, y) = 0.
Using Theorem 3.1, we obtain the desired result. �

Next, deals with the problem finding a common element of the set of so-
lutions of a system of variational inequalities for α-inverse strongly monotone

operators {Ak}
M

k=1 and the set of fixed points of a finite family of nonexpan-

sive mappings {Si}
N

i=1. One can employ the method (3) to find this common
element. We obtain the following result:

Corollary 3.3. Let {Ak}
M
k=1 : C → H be a finite family of α-inverse strongly

monotone operators, {Si}
N

i=1 : C → C be a finite family of nonexpansive map-

pings. Assume that the set F =
(
∩N
i=1F (Si)

)⋂ (
∩M
k=1V I(Ak, C)

)
is nonempty.
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Let {xn} be the sequence generated by the following manner:

(33)





x0 ∈ H, C0 = Q0 = C,

zn = PCxn,

uk
n = PC(zn − λAkzn), k = 1, . . . ,M,

kn := argmax
{∥∥uk

n − xn

∥∥ : k = 1, . . . ,M
}
, ūn := ukn

n ,

yin = αnūn + (1− αn)Siūn, i = 1, . . . , N,

in := argmax
{∥∥yin − xn

∥∥ : i = 1, . . . , N
}
, ȳn := yinn ,

Cn = {v ∈ H : ‖v − ȳn‖ ≤ ‖v − zn‖ ≤ ‖v − xn‖} ,

Qn = {v ∈ H : 〈x0 − xn, xn − v〉 ≥ 0} ,

xn+1 = PCn∩Qn
x0, n ≥ 0,

where, λ ∈ (0; 2α) and {αn} ⊂ [0, 1], lim supn→∞ αn < 1. Then the sequence

{xn} converges strongly to PFx0.

Proof. Putting fl(x, y) = 0 for all l = 1, 2, . . . ,K and rn = 1. Then T fl
rn
x =

PCx for all x ∈ H . The proof of Corollary 3.3 follows from Theorem 3.1. �

However, the subset Cn in the method (33) is complex. Moreover, the pro-
jection PCn∩Qn

x0 in each iterative step, in general, is difficult to find it. One
assumes that PCx can be calculated easily [4, 13]. To overcome the complexity
caused by Cn and PCn∩Qn

, we propose the following parallel modified algo-
rithm:

Algorithm 3.4. Let x0 ∈ H be an arbitrary chosen element , {αn} be in [0, 1],
and λ ∈ (0; 2α). Assume that xn is known for some n ≥ 0.
Step 1. Calculate zn = PC(xn).
Step 2. Calculate the intermediate approximations uk

n in parallel

uk
n = PC(zn − λAk(zn)), k = 1, 2, . . . ,M.

Step 3. Find kn = argmax
{∥∥uk

n − xn

∥∥ : k = 1, . . . ,M
}
. Put ūn := ukn

n .

Step 4. Calculate the intermediate approximations yin in parallel

yin = αnūn + (1− αn)Siūn, i = 1, 2, . . . , N.

Step 5. Find in = argmax
{∥∥yin − xn

∥∥ : i = 1, . . . , N
}
. Put ȳn := yinn .

Step 6. If ||ȳn − xn|| = 0 then stop. Else, move to Step 7.
Step 7. Define

Cn = {v ∈ H : ‖v − ȳn‖ ≤ ‖v − xn‖} ,

Qn = {v ∈ H : 〈x0 − xn, xn − v〉 ≥ 0} .

Step 8. Perform

xn+1 = PCn∩Qn
x0.

Step 9. If xn+1 = xn then stop. Else, set n := n+ 1 and return Step 1.
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Clearly, in every iterative step of Algorithm 3.4, Cn and Qn are either H
or the half spaces. Therefore, by calculating similarly in [13], we can obtain
xn+1 = PCn∩Qn

x0 easily. Indeed, we see that ‖v − ȳn‖ ≤ ‖v − xn‖ is equivalent
to 〈

v −
xn + ȳn

2
, xn − ȳn

〉
≤ 0.

Therefore, we obtain that [13, Algorithm 1]

(34) xn+1 := PCn
x0 = x0 −

〈
xn − ȳn, x0 −

(xn+ȳn)
2

〉

||xn − ȳn||2
(xn − ȳn) ,

if PCn
x0 ∈ Qn. Else

(35) xn+1 = PCn∩Qn
x0 := x0 + λ1(xn − ȳn) + λ2(x0 − xn),

where λ1, λ2 is the solution of the system of two linear equations
{

λ1||xn − ȳn||2 + λ2 〈xn − ȳn, x0 − xn〉 = −
〈
x0 −

xn+ȳn

2 , xn − ȳn
〉

λ1 〈xn − ȳn, x0 − xn〉+ λ2||x0 − xn||2 = −||x0 − xn||2.

Theorem 3.5. Let {Ak}
M
k=1 : C → H be a finite family of α-inverse strongly

monotone operators and {Si}
N

i=1 : C → C be a finite family of nonexpansive

mappings such that F =
(
∩N
i=1F (Si)

)⋂ (
∩M
k=1V I(Ak, C)

)
6= ∅. Assume that

the sequence {αn} ⊂ [0, 1] satisfies lim supn→∞ αn < 1. Then the sequence

{xn} generated by Algorithm 3.4 converges strongly to PFx0.

Proof. By arguing similarly to the proof of Theorem 3.1 we obtain F,Cn, Qn

are closed convex subsets of C. Now, we show that F ⊂ Cn ∩ Qn. For every
u ∈ F , by the convexity of ‖·‖2 and the nonexpansiveness of Sin , we obtain

‖u− ȳn‖
2
= ‖u− αnūn − (1− αn)Sin ūn‖

2

= ‖u‖2 − 2αn 〈u, ūn〉 − 2(1− αn) 〈u, Sin ūn〉

+ ‖αnūn + (1− αn)Sin ūn‖
2

≤ ‖u‖2 − 2αn 〈u, ūn〉 − 2(1− αn) 〈u, Sin ūn〉+ αn ‖ūn‖
2

+ (1− αn) ‖Sin ūn‖
2

= αn ‖u− ūn‖
2 + (1− αn) ‖u− Sin ūn‖

2

≤ αn ‖u− ūn‖
2
+ (1− αn) ‖u− ūn‖

2

= ‖u− ūn‖
2

From the definition of ūn, (7) and the nonexpansiveness of PC(I − λAkn
) and

PC , we have

‖u− ūn‖ = ‖PC(I − λAkn
)u − PC(I − λAkn

)zn‖

≤ ‖u− zn‖ = ‖PCu− PCxn‖
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≤ ‖u− xn‖ .

Therefore,

‖u− ȳn‖ ≤ ‖u− xn‖ .

This implies that F ⊂ Cn for all n ≥ 0. By the induction, we obtain that
F ⊂ Cn ∩ Qn for all n ≥ 0. By arguing similarly to the proof of Theorem 3.1
we obtain the sequences {xn},

{
yin

}
, {un}, {Tiun} are bounded and

(36)





limn→∞ ‖xn+1 − xn‖ = 0,

limn→∞ ‖xn+1 − ȳn‖ = 0,

limn→∞

∥∥xn − yin
∥∥ = 0, ∀i = 1, 2, . . . , N.

By ūn, Tiūn ∈ C and the convexity of C, yin ∈ C. Hence
∥∥zn − yin

∥∥ =∥∥PCxn − PCy
i
n

∥∥ ≤
∥∥xn − yin

∥∥ → 0. So, ‖xn − zn‖ ≤
∥∥xn − yin

∥∥+
∥∥yin − zn

∥∥ →
0. We have

∥∥zn − yin
∥∥ = ‖αn(zn − ūn) + (1− αn)(zn − Tiūn)‖

≥ (1− αn) ‖zn − Tiūn‖ − αn ‖zn − ūn‖ .

Therefore,

‖zn − Tiūn‖ ≤
1

1− αn

∥∥zn − yin
∥∥+

αn

1− αn

‖zn − ūn‖ .

This together with the nonexpansiveness of Ti implies that

‖zn − Tizn‖ ≤ ‖zn − Tiūn‖+ ‖Tiūn − Tixn‖

≤ ‖zn − Tiūn‖+ ‖ūn − xn‖

≤
1

1− αn

∥∥zn − yin
∥∥+

αn

1− αn

‖zn − ūn‖+ ‖ūn − zn‖+ ‖zn − xn‖

≤
1

1− αn

∥∥zn − yin
∥∥+

1

1− αn

‖zn − ūn‖+ ‖zn − xn‖ .(37)

By arguing similarly to (24) we obtain

(38) lim
n→∞

‖zn − ūn‖ = 0.

From (37), (38) and limn→∞

∥∥zn − yin
∥∥ = limn→∞ ‖zn − xn‖ = 0 we get

(39) lim
n→∞

‖zn − Tizn‖ = 0.

Repeating Steps 5, 6, 7 in the proof of Theorem 3.1 we get limn→∞ zn = PFx0.
By limn→∞ ‖zn − xn‖ = 0, limn→∞ xn = PFx0. The proof of Theorem 3.5 is
complete. �

Using Theorem 3.5, one gets the following result which was obtained in [2].



EQUILIBRIUM PROBLEMS, VARIATIONAL INEQUALITIES AND FIXED POINTS 387

Corollary 3.6 ([2]). Let {Si}
N

i=1 : C → C be a finite family of nonexpansive

mappings with F =
⋂N

i=1 F (Si) 6= ∅. Let {xn} be the sequence generated by the

following algorithm:




x0 ∈ H,

zn = PC(xn),

yin = αnun + (1− αn)Siun, i = 1, . . . , N,

in := argmax
{∥∥yin − xn

∥∥ : i = 1, . . . , N
}
, ȳn := yinn ,

Cn = {v ∈ H : ‖v − ȳn‖ ≤ ‖v − xn‖} ,

Qn = {v ∈ H : 〈x0 − xn, xn − v〉 ≥ 0} ,

xn+1 = PCn∩Qn
x0, n ≥ 0,

where the sequence {αn} ⊂ [0, 1] satisfies lim supn→∞ αn < 1. Then the se-

quence {xn} converges strongly to PFx0.

Proof. Putting A(x) = 0 for all x ∈ H . The proof of Corollary 3.6 follows
immediately from Theorem 3.5. �
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