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WEAK AND STRONG CONVERGENCE THEOREMS FOR A

SYSTEM OF MIXED EQUILIBRIUM PROBLEMS AND A

NONEXPANSIVE MAPPING IN HILBERT SPACES

Somyot Plubtieng and Kamonrat Sombut

Abstract. In this paper, we introduce an iterative sequence for finding
solution of a system of mixed equilibrium problems and the set of fixed
points of a nonexpansive mapping in Hilbert spaces. Then, the weak and
strong convergence theorems are proved under some parameters control-
ling conditions. Moreover, we apply our result to fixed point problems,
system of equilibrium problems, general system of variational inequal-
ities, mixed equilibrium problem, equilibrium problem and variational
inequality.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H . Recall
that a mapping f : C → C is called contractive if there exists a constant
α ∈ (0, 1) such that ‖f(x) − f(y)‖ ≤ α‖x − y‖ for all x, y ∈ C. A mapping
T : C → C is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.
Denote the set of fixed points of T by F (T ). Fixed point iterations process
for nonexpansive mappings in Banach spaces including Mann and Ishikawa
iterations process have been studied extensively by many authors to solve the
nonlinear operator equations. In 1953, W. R. Mann [14] introduced Mann
iterative process defined by

(1.1) xn+1 = (1− αn)xn + αnTxn,

where αn ∈ [0, 1] and satisfies the assumptions limn→∞ αn = 0,
∑

∞

n=1 αn = ∞
and proved the convergence of {xn} to a point y implies that Ty = y.

Let ϕ : C → R be a real-valued function and F : C × C → R be an equilib-
rium bifunction, that is, F (u, u) = 0 for each u ∈ C. The mixed equilibrium
problem is to find x∗ ∈ C such that

(1.2) F (x∗, y) + ϕ(y)− ϕ(x∗) ≥ 0 for all y ∈ C.
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Denote the set of solution of (1.2) by MEP (F, ϕ).
In particular, if ϕ = 0, this problem reduces to the equilibrium problem,

which is to find x∗ ∈ C such that

(1.3) F (x∗, y) ≥ 0 for all y ∈ C.

The set of solutions of (1.3) is denoted by EP (F ). Numerous problems in
physics, optimization, and economics reduce to find a solution of (1.3). The
mixed equilibrium problems include fixed point problems, optimization prob-
lems, variational inequality problems, Nash equilibrium problems, and the equi-
librium problems as special cases (see, e.g., [2, 3, 5, 6, 7, 8, 9, 13, 15, 20, 21,
22, 27, 31, 32]).

Let F1, F2 : C × C → R be two monotone bifunctions and λ, µ > 0 are two
constants. In 2009, Moudafi [16] considered the following problem for finding
(x∗, y∗) ∈ C × C such that finding (x∗, y∗) ∈ C × C such that

(1.4)

{

F1(x
∗, z) + 1

λ
〈y∗ − x∗, x∗ − z〉 ≥ 0, ∀ z ∈ C,

F2(y
∗, z) + 1

λ
〈x∗ − y∗, y∗ − z〉 ≥ 0, ∀ z ∈ C.

Using the following alternating equilibrium algorithm: (x0, y0) ∈ H ×H given,
{xk} and {yk} be sequences in H defined by

(1.5)

{

λF1(xk+1, z) + 〈yk − xk+1, xk+1 − z〉 ≥ 0, ∀ z ∈ C,

λF2(yk+1, z) + 〈xk+1 − yk+1, yk+1 − z〉 ≥ 0, ∀ z ∈ C.

Moudafi proved that the sequence (xk, yk) weakly converges to a solution of
the problem (1.4). Further, if we add up the requirement that x∗ = y∗, then
problem (1.4) reduce to the equilibrium problem (1.3).

In this paper, we consider the following problem for finding (x∗, y∗) ∈ C×C

such that

(1.6)

{

F1(x
∗, z) + ϕ(z)− ϕ(x∗) + 1

λ
〈y∗ − x∗, x∗ − z〉 ≥ 0, ∀ z ∈ C,

F2(y
∗, z) + ϕ(z)− ϕ(y∗) + 1

µ
〈x∗ − y∗, y∗ − z〉 ≥ 0, ∀ z ∈ C,

which is called a system of mixed equilibrium problems. In particular, if λ = µ,
then problem (1.6) reduce to finding (x∗, y∗) ∈ C × C such that

(1.7)

{

F1(x
∗, z) + ϕ(z)− ϕ(x∗) + 1

λ
〈y∗ − x∗, x∗ − z〉 ≥ 0, ∀ z ∈ C,

F2(y
∗, z) + ϕ(z)− ϕ(y∗) + 1

λ
〈x∗ − y∗, y∗ − z〉 ≥ 0, ∀ z ∈ C.

If ϕ = 0 and λ = µ, then the problem (1.6) reduce to problems (1.7).
The system of nonlinear variational inequalities close to these introduce by

Verma [28] are also a special case: by taking ϕ = 0, F1(x, y) = 〈A(x), y − x〉
and F2(x, y) = 〈B(x), y−x〉, where A,B : C → H are two nonlinear mappings.
In this case, we can reformulate problem (1.7) to finding (x∗, y∗) ∈ C×C such
that

(1.8)

{

〈λA(x∗) + x∗ − y∗, z − x∗〉 ≥ 0, ∀ z ∈ C,

〈µB(y∗) + y∗ − x∗, z − y∗〉 ≥ 0, ∀ z ∈ C,
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which is called a general system of variational inequalities, where λ > 0 and
µ > 0 are two constants. Moreover, if we add up the requirement that x∗ = y∗,
then problem (1.8) reduce to the classical variational inequality V I(A,C).

In this paper, we organize as follows. In Section 2, we present some basic
concepts and useful lemmas for proving the convergence results of this paper.
In Section 3, we introduce two iterative sequences (3.1) and (3.5). Moreover,
we prove weak and strong convergence theorems for finding solution of a system
of mixed equilibrium problems and the set of fixed points of a nonexpansive
mapping in Hilbert spaces. Finally, we apply our result to fixed point prob-
lems, system of equilibrium problems, general system of variational inequalities,
mixed equilibrium problem, equilibrium problem and variational inequality.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and
let C be a closed convex subset of H . For every point x ∈ H , there exists a
unique nearest point in C, denote by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is well-known that PC is a
nonexpansive mapping of H onto C and satisfies

(2.1) 〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖
2

for all x, y ∈ H . Moreover, PCx is characterized by the following properties:
PCx ∈ C and

(2.2) 〈x− PCx, y − PCy〉 ≤ 0,

(2.3) ‖x− y‖2 ≥ ‖x− PCx‖
2 + ‖y − PCy‖

2

for all x ∈ H, y ∈ C. Further, for all x ∈ H and y ∈ C, y = PCx if and only if
〈x− y, y − z〉 ≥ 0, ∀z ∈ C.

A space X is said to satisfy Opial’s condition if for each sequence {xn}∞n=1

in X which converges weakly to point x ∈ X , we have

(2.4) lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ X, y 6= x

and

(2.5) lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀y ∈ X, y 6= x.

Next, we collects some lemmas which will be use in the next section.

Lemma 2.1 ([18]). Let (E, 〈·, ·〉) be an inner product space. Then for all

x, y, z ∈ E and α, β, γ ∈ [0, 1] with α+ β + γ = 1, we have

‖αx+βy+γz‖2 = α‖x‖2+β‖y‖2+γ‖z‖2−αβ‖x−y‖2−αγ‖x−z‖2−βγ‖y−z‖2.
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Lemma 2.2 ([12]). Let H be a Hilbert space, C a closed convex subset of H,

and T : C → C a nonexpansive mapping with F (T ) 6= ∅. If {xn} is a sequence

in C weakly converging to x ∈ C and if {(I − T )xn} converges strongly to y,

then (I − T )x = y.

Lemma 2.3 ([26]). Let C be a closed convex subset of a real Hilbert space H

and let {xn} be a sequence in H. Suppose that for all u ∈ C,

‖xn+1 − u‖ ≤ ‖xn − u‖

for every n = 0, 1, 2, . . .. Then, {PCxn} converges strongly to some z ∈ C.

Lemma 2.4 ([29]). Assume {an} is a sequence of nonnegative real numbers

such that

an+1 ≤ (1− αn)an + δn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑

∞

n=1 αn = ∞,

(2) lim supn→∞

δn
αn

≤ 0 or
∑

∞

n=1 |δn| < ∞.

Then limn→∞ an = 0.

For solving the mixed equilibrium problems for an equilibrium bifunction
F : C × C → R, let us assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C, limt→0 F (tz + (1 − t)x, y) ≤ F (x, y);
(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous;
(B1) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊆ C and

yx ∈ C such that for any z ∈ C\Dx,

F (z, yx) + ϕ(yx)− ϕ(z) +
1

r
〈yx − z, z − x〉 < 0;

(B2) C is a bounded set.

The following lemmas appears implicitly in [3] and [11].

Lemma 2.5 ([3]). Let C be a nonempty closed convex subset of H and let F

be a bifunction of C × C into R satisfying (A1)-(A4). Let r > 0 and x ∈ H.

Then, there exists z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0 for all y ∈ C.

Lemma 2.6 ([11]). Assume that F : C × C → R satisfies (A1)-(A4). For

r > 0 and x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all z ∈ H. Then, the following hold:

(1) Tr is single-valued;
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(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖
2 ≤ 〈Trx− Try, x− y〉;

(3) F (Tr) = EP (F );
(4) EP (F ) is closed and convex.

By a similar argument as in the proof of Lemma 2.3 in [19], we have the
following result.

Lemma 2.7 ([19]). Let C be a nonempty closed convex subset of a real Hilbert

space H. Let F : C ×C → R be an equilibrium bifunction satisfying (A1)-(A4)
and let ϕ : C → R be a lower semicontinuous and convex functional. For r > 0
and x ∈ H, define a mapping Sr(x) : H → C as follows.

(2.6)

Sr(x) = {y ∈ C : F (y, z)+ϕ(z)−ϕ(y)+
1

r
〈y−x, z−y〉 ≥ 0, ∀z ∈ C} ∀x ∈ H.

Then, the following results hold:

(i) For each x ∈ H,Sr(x) 6= ∅;
(ii) Sr is single-valued;
(iii) Sr is firmly nonexpansive, i.e., for any x, y ∈ H

(2.7) ‖Sr(x) − Sr(y)‖
2 ≤ 〈Sr(x) − Sr(y), x− y〉;

(iv) F (Sr) = MEF (F, ϕ);
(v) MEF (F, ϕ) is closed and convex.

Lemma 2.8. Let C be a closed convex subset of a real Hilbert space H. Let

F1 and F2 be two mappings from C ×C → R satisfying (A1)-(A4) and let S1,λ

and S2,µ be defined as in Lemma 2.7 associated to F1 and F2, respectively. For

given x∗, y∗ ∈ C, (x∗, y∗) is a solution of problem (1.6) if and only if x∗ is a

fixed point of the mapping G : C → C defined by

G(x) = S1,λ(S2,µx), ∀x ∈ C,

where y∗ = S2,µx
∗.

Proof. By a similar argument as in the proof of Proposition 2.1 in [16], we have
obtain the result. �

We note from Lemma 2.7 that the mapping G is nonexpansive. Moreover, if
C is a closed bounded convex subset of H , then the solution of problem (1.6)
always exists. Throughout this paper, we denote the set of solutions of (1.6)
and (1.7) by Ω and Ω1, respectively.

3. Main result

In this section, we prove weak and strong convergence theorems for finding
a common element of the set of fixed points of a nonexpansive mapping and
the set of solutions of the system of mixed equilibrium problems.
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Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H.

Let F1 and F2 be two bifunctions from C × C → R satisfying (A1)-(A4). Let

λ, µ > 0 and let S1,λ and S2,µ be defined as in Lemma 2.7 associated to F1 and

F2, respectively. Let T be a nonexpansive mapping of C into itself such that

F (T ) ∩ Ω 6= ∅. Suppose x0 = x ∈ C and {xn}, {yn}, {zn} are given by

(3.1)










zn ∈ C;F2(zn, z) + ϕ(z)− ϕ(zn) +
1
µ
〈z − zn, zn − xn〉 ≥ 0, ∀ z ∈ C,

yn ∈ C;F1(yn, z) + ϕ(z)− ϕ(yn) +
1
λ
〈z − yn, yn − zn〉 ≥ 0, ∀ z ∈ C,

xn+1 = αnxn + (1− αn)Tyn,

for all n ∈ N, where {αn} ⊂ [a, b] for some a, b ∈ (0, 1). Then {xn} converges

weakly to x̄ = limn→∞ PF (T )∩Ωxn and (x̄, ȳ) is a solution of problem (1.6),
where ȳ = S2,µx̄.

Proof. Let x∗ ∈ F (T ) ∩ Ω. Then x∗ = Tx∗ and x∗ = S1,λ(S2,µx
∗). Put

y∗ = S2,µx
∗, yn = S1,λzn and zn = S2,µxn. Since

‖yn − x∗‖ = ‖S1,λzn − S1,λy
∗‖

≤ ‖zn − y∗‖

= ‖S2,µxn − S2,µx
∗‖

≤ ‖xn − x∗‖,

it follows by Lemma 2.1 that

‖xn+1 − x∗‖2

= ‖αnxn + (1− αn)Tyn‖
2

= ‖αn(xn − x∗) + (1− αn)(Tyn − x∗)‖2

= αn‖xn − x∗‖2 + (1− αn)‖Tyn − x∗‖2 − αn(1− αn)‖Tyn − xn‖
2

≤ αn‖xn − x∗‖2 + (1− αn)‖yn − x∗‖2 − αn(1− αn)‖Tyn − xn‖
2

≤ αn‖xn − x∗‖2 + (1− αn)‖xn − x∗‖2 − αn(1− αn)‖Tyn − xn‖
2

= ‖xn − x∗‖2 − αn(1− αn)‖Tyn − xn‖

≤ ‖xn − x∗‖2.(3.2)

Hence {‖xn+1−x∗‖} is a decreasing sequence and therefore limn→∞ ‖xn−x∗‖
exists. This implies that {xn}, {yn}, {zn} and {Tyn} are bounded. From (3.2),
we note that

αn(1 − αn)‖Tyn − xn‖ ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2.

Since 0 < a ≤ αn ≤ b < 1 and limn→∞ ‖xn − x∗‖2 = limn→∞ ‖xn+1 − x∗‖2, we
have

a(1− b)‖Tyn − xn‖ ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 → 0.
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This implies that limn→∞ ‖Tyn − xn‖ = 0. Since S1,λ and S2,µ are firmly
nonexpansive, it follows that

‖zn − y∗‖2 = ‖S2,µxn − S2,µx
∗‖2

≤ 〈S2,µxn − S2,µx
∗, xn − x∗〉

=
1

2
(‖zn − y∗‖2 + ‖xn − x∗‖2 − ‖zn − y∗ − xn + x∗‖2),

and so ‖zn − y∗‖2 ≤ ‖xn − x∗‖2 − ‖zn − xn + x∗ − y∗‖2. By the convexity of
‖ · ‖2, we have

‖xn+1 − x∗‖2 = ‖αnxn + (1− αn)Tyn‖
2

= ‖αn(xn − x∗) + (1− αn)(Tyn − x∗)‖2

≤ αn‖xn − x∗‖2 + (1 − αn)‖Tyn − x∗‖2

≤ αn‖xn − x∗‖2 + (1 − αn)‖yn − x∗‖2

≤ αn‖xn − x∗‖2 + (1 − αn)‖zn − y∗‖2

≤ αn‖xn − x∗‖2 + (1 − αn)[‖xn − x∗‖2 − ‖zn − xn + x∗ − y∗‖2].

This implies that

(1 − αn)‖zn − xn + x∗ − y∗‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2.

Since 0 < a ≤ αn ≤ b < 1 and limn→∞ ‖xn − x∗‖2 = limn→∞ ‖xn+1 − x∗‖2, we
obtain limn→∞ ‖zn − xn + x∗ − y∗‖ = 0. Similarly, we note that

‖yn − x∗‖2 = ‖S1,λzn − S1,λy
∗‖2

≤ 〈S1,λzn − S1,λy
∗, zn − y∗〉

=
1

2
(‖yn − x∗‖2 + ‖zn − y∗‖2 − ‖yn − x∗ − zn + y∗‖2)

≤
1

2
(‖yn − x∗‖2 + ‖xn − x∗‖2 − ‖yn − zn − x∗ + y∗‖2),

and so ‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖yn − zn − x∗ + y∗‖2. Thus, we have

‖xn+1 − x∗‖2 ≤ αn‖xn − x∗‖2 + (1 − αn)‖yn − x∗‖2

≤ αn‖xn − x∗‖2 + (1 − αn)[‖xn − x∗‖2 − ‖yn − zn − x∗ + y∗‖2].

Hence

(1− αn)‖yn − zn − x∗ + y∗‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2.

Since 0 < a ≤ αn ≤ b < 1 and limn→∞ ‖xn − x∗‖2 = limn→∞ ‖xn+1 − x∗‖2, it
follows that limn→∞ ‖yn − zn − x∗ + y∗‖ = 0. Hence

‖Tyn − yn‖ ≤ ‖Tyn − xn‖+ ‖xn − zn − x∗ + y∗‖+ ‖zn − yn + x∗ − y∗‖ → 0,

and therefore

‖yn − xn‖ ≤ ‖yn − Tyn‖+ ‖Tyn − xn‖ → 0.
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Since

‖Txn − xn‖ ≤ ‖Txn − Tyn‖+ ‖Tyn − xn‖ ≤ ‖xn − yn‖+ ‖Tyn − xn‖,

we get limn→∞ ‖Txn − xn‖ = 0. Since {xn} is bounded, we assume that there
exists a subsequence {xni

} of {xn} such that {xni
} converges weakly to x̄. By

Lemma 2.2, we have x̄ ∈ F (T ). Let G be a mapping which defined as in Lemma
2.8. Thus, we have

‖yn −G(yn)‖ = ‖S1,λS2,µxn −G(yn)‖ = ‖G(xn)−G(yn)‖ ≤ ‖xn − yn‖,

and so

‖xn−G(xn)‖ ≤ ‖xn−yn‖+‖yn−G(yn)‖+‖G(yn)−G(xn)‖ ≤ 3‖xn−yn‖ → 0.

By Lemma 2.2 and Lemma 2.8, we have x̄ ∈ Ω and hence x̄ ∈ F (T ) ∩ Ω. Let
{xnj

} be another sequence of {xn} such that {xnj
} converges weakly to x́. We

next show that x̄ = x́. Suppose that x̄ 6= x́. By the Opial’s condition, we get

lim
n→∞

‖xn − x̄‖ = lim inf
i→∞

‖xni
− x̄‖ < lim inf

i→∞

‖xni
− x́‖ = lim

n→∞

‖xn − x́‖

= lim inf
j→∞

‖xnj
− x́‖ < lim inf

j→∞

‖xnj
− x̄‖ = lim

n→∞

‖xn − x̄‖.

This is a contradiction. Thus, we have x̄ = x́. This implies that {xn} converges
weakly to x̄ ∈ F (T ) ∩ Ω. Put un = PF (T )∩Ωxn. Finally, we show that x̄ =
limn→∞ un. From (2.1) and x̄ ∈ F (T ) ∩ Ω, we have

〈x̄− un, un − xn〉 ≥ 0.

By Lemma 2.3, {un} converges strongly to x̂ ∈ F (T ) ∩ Ω and hence

〈x̄− x̂, x̂− x̄〉 ≥ 0.

This conclude that x̄ = x̂. �

Setting µ = λ in Theorem 3.1, we have following result.

Corollary 3.2. Let C be a closed convex subset of a real Hilbert space H.

Let F1 and F2 be two bifunctions from C × C → R satisfying (A1)-(A4). Let

λ > 0 and let S1,λ and S2,λ be defined as in Lemma 2.7 associated to F1 and

F2 respectively. Let T be a nonexpansive mapping of C into itself such that

F (T ) ∩ Ω 6= ∅. Suppose x0 = x ∈ C and {xn}, {yn}, {zn} are given by

(3.3)










zn ∈ C;F2(zn, z) + ϕ(z)− ϕ(zn) +
1
λ
〈z − zn, zn − xn〉 ≥ 0, ∀ z ∈ C,

yn ∈ C;F1(yn, z) + ϕ(z)− ϕ(yn) +
1
λ
〈z − yn, yn − zn〉 ≥ 0, ∀ z ∈ C,

xn+1 = αnxn + (1− αn)Tyn,

for all n ∈ N, where {αn} ⊂ [a, b] for some a, b ∈ (0, 1). Then {xn} converges

weakly to x̄ = limn→∞ PF (T )∩Ωxn and (x̄, ȳ) is a solution of problem (1.7),
where ȳ = S2,λx̄.

Setting ϕ = 0 in Theorem 3.1, we have following result.
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Corollary 3.3. Let C be a closed convex subset of a real Hilbert space H.

Let F1 and F2 be two bifunctions from C × C → R satisfying (A1)-(A4). Let

λ, µ > 0 and let T1,λ and T2,µ be defined as in Lemma 2.6 associated to F1 and

F2, respectively. Let S be a nonexpansive mapping of C into itself such that

F (S) ∩Ω1 6= ∅. Suppose x0 = x ∈ C and {xn}, {yn}, {zn} are given by

(3.4)











zn ∈ C;F2(zn, z) +
1
µ
〈z − zn, zn − xn〉 ≥ 0, ∀ z ∈ C,

yn ∈ C;F1(yn, z) +
1
λ
〈z − yn, yn − zn〉 ≥ 0, ∀ z ∈ C,

xn+1 = αnxn + (1− αn)Syn,

for all n ∈ N, where {αn} ⊂ [a, b] for some a, b ∈ (0, 1). Then {xn} converges

weakly to x̄ = limn→∞ PF (S)∩Ω1
xn and (x̄, ȳ) is a solution of problem (1.7),

where ȳ = T2,µx̄.

Theorem 3.4. Let C be a closed convex subset of a real Hilbert space H.

Let F1 and F2 be two bifunctions from C × C → R satisfying (A1)-(A4). Let

λ, µ > 0 and let S1,λ and S2,µ be defined as in Lemma 2.7 associated to F1 and

F2 respectively. Let T be a nonexpansive mapping of C into itself such that

F (T ) ∩ Ω 6= ∅. Suppose x0, u ∈ C and {xn}, {yn}, {zn} are given by

(3.5)










zn ∈ C;F2(zn, z) + ϕ(z)− ϕ(zn) +
1
µ
〈z − zn, zn − xn〉 ≥ 0, ∀ z ∈ C,

yn ∈ C;F1(yn, z) + ϕ(z)− ϕ(yn) +
1
λ
〈z − yn, yn − zn〉 ≥ 0, ∀ z ∈ C,

xn+1 = αnu+ (1− αn)Tyn,

for all n ∈ N, where {αn} ⊂ [0, 1]. If limn→∞ αn = 0,
∑

∞

n=1 αn = ∞ and
∑

∞

n=1 |αn+1 − αn| < ∞, then {xn} converges strongly to x̄ = PF (T )∩Ωu and

(x̄, ȳ) is a solution of problem (1.6), where ȳ = S2,µx̄.

Proof. Let x∗ ∈ F (T ) ∩ Ω. Then x∗ = Tx∗ and x∗ = S1,λ(S2,µx
∗). Put

y∗ = S2,µx
∗, yn = S1,λzn and zn = S2,µxn. Thus, we have

‖xn+1 − x∗‖ = ‖αnu+ (1− αn)Tyn − x∗‖

≤ αn‖u− x∗‖+ (1− αn)‖yn − x∗‖

= αn‖u− x∗‖+ (1− αn)‖S1,λzn − S1,λy
∗‖

≤ αn‖u− x∗‖+ (1− αn)‖zn − y∗‖

= αn‖u− x∗‖+ (1− αn)‖S2,µxn − S2,µx
∗‖

≤ αn‖u− x∗‖+ (1− αn)‖xn − x∗‖

≤ max{‖u− x∗‖, ‖xn − x∗‖}.

By introduction, we obtain

‖xn − x∗‖ ≤ max{‖u− x∗‖, ‖x0 − x∗‖}
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for all n ≥ 1. This implies that {xn} is bounded and hence the sequences
{yn}, {zn} and {Tyn} are also bounded. Moreover, we observe that

(3.6)
‖yn+1 − yn‖ = ‖S1,λzn+1 − S1,λzn‖ ≤ ‖zn+1 − zn‖

= ‖S2,µxn+1 − S2,µxn‖ ≤ ‖xn+1 − xn‖

and

‖xn+2 − xn+1‖

= ‖αn+1u+ (1− αn+1)Tyn+1 − αnu− (1− αn)Tyn‖

= ‖(αn+1 − αn)u+ (1− αn+1)(Tyn+1 − Tyn) + (αn − αn+1)Tyn‖

≤ |αn+1 − αn|(‖u‖+ ‖Tyn‖) + (1 − αn+1)‖yn+1 − yn‖

≤ (1− αn+1)‖xn+1 − xn‖+ |αn+1 − αn|(‖u‖+ ‖Tyn‖).

By Lemma 2.4, we obtain ‖xn+1 − xn‖ → 0 as n → ∞.
Consequently, ‖yn+1 − yn‖ → 0 and ‖zn+1 − zn‖ → 0 as n → ∞. Since

xn+1 − xn = αn(u− xn) + (1− αn)(Tyn − xn),

it follows from limn→∞ αn = 0 and limn→∞ ‖xn+1 − xn‖ = 0 that

lim
n→∞

‖Tyn − xn‖ = 0.

As in the proof of Theorem 3.1, we obtain

‖zn − y∗‖2 ≤ ‖xn − x∗‖2 − ‖zn − xn + x∗ − y∗‖2

and

‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖yn − zn − x∗ + y∗‖2.

By the convexity of ‖ · ‖2, we have

‖xn+1 − x∗‖2 ≤ αn‖u− x∗‖2 + (1− αn)‖yn − x∗‖2

≤ αn‖u− x∗‖2 + (1− αn)‖zn − y∗‖2

≤ αn‖u− x∗‖2 + (1− αn)[‖xn − x∗‖2 − ‖zn − xn + x∗ − y∗‖2]

and

‖xn+1 − x∗‖2 ≤ αn‖u− x∗‖2 + (1− αn)‖yn − x∗‖2

≤ αn‖u− x∗‖2 + (1− αn)[‖xn − x∗‖2 − ‖yn − zn − x∗ + y∗‖2].

This implies that

(1 − αn)‖zn − xn + x∗ − y∗‖2

≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

≤ αn‖u− x∗‖2 + ‖xn − xn+1‖(‖xn − x∗‖ − ‖xn+1 − x∗‖)

and

(1− αn)‖yn − zn − x∗ + y∗‖2

≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2
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≤ αn‖u− x∗‖2 + ‖xn − xn+1‖(‖xn − x∗‖ − ‖xn+1 − x∗‖).

Since limn→∞ αn = 0 and limn→∞ ‖xn+1 − xn‖ = 0, it follows that

lim
n→∞

‖zn − xn + x∗ − y∗‖ = 0 and lim
n→∞

‖yn − zn − x∗ + y∗‖ = 0.

Hence

‖Tyn − yn‖ ≤ ‖Tyn − xn‖+ ‖xn − zn − x∗ + y∗‖+ ‖zn − yn + x∗ − y∗‖ → 0

and therefore

‖yn − xn‖ ≤ ‖yn − Tyn‖+ ‖Tyn − xn‖ → 0.

Next, we show that
lim sup
n→∞

〈u− x̄, xn − x̄〉 ≤ 0,

where x̄ = PF (T )∩Ωu. To show this inequality, we choose a subsequence {yni
}

of {yn} such that

lim sup
n→∞

〈u− x̄, T yn − x̄〉 = lim
i→∞

〈u− x̄, T yni
− x̄〉.

Since {yni
} is bounded, there exists a subsequence {ynij

} of {yni
} which con-

verges weakly to z. Without loss of generality, we can assume that yni
⇀ z.

From ‖Tyn−yn‖ → 0, we obtain Tyni
⇀ z. By Lemma 2.2, we have z ∈ F (T ).

Let G be a mapping which defined in Lemma 2.8. Thus, we have

‖yn −G(yn)‖ = ‖S1,λS2,µxn −G(yn)‖ = ‖G(xn)−G(yn)‖ ≤ ‖xn − yn‖ → 0.

According to Lemma 2.2 and Lemma 2.8, we have z ∈ Ω and hence z ∈
F (T ) ∩ Ω. Now from x̄ = PF (T )∩Ωu, we have

lim sup
n→∞

〈u− x̄, xn − x̄〉 = lim sup
n→∞

〈u− x̄, T yn − x̄〉

= lim
i→∞

〈u− x̄, T yni
− x̄〉

= 〈u− x̄, z − x̄〉 ≤ 0.(3.7)

Finally, we note that

‖xn+1 − x̄‖2

= 〈αnu+ (1− αn)Tyn − x̄, xn+1 − x̄〉

= αn〈u − x̄, xn+1 − x̄〉+ (1 − αn)〈Tyn − x̄, xn+1 − x̄〉

≤ αn〈u − x̄, xn+1 − x̄〉+ 1
2 (1 − αn)[‖Tyn − x̄‖2 + ‖xn+1 − x̄‖2]

≤ αn〈u − x̄, xn+1 − x̄〉+ 1
2 (1 − αn)‖yn − x̄‖2 + 1

2 (1− αn)‖xn+1 − x̄‖2

≤ αn〈u − x̄, xn+1 − x̄〉+ (1 − αn)‖xn − x̄‖2 + 1
2‖xn+1 − x̄‖2

≤ (1− αn)‖xn − x̄‖2 + 2αn〈u− x̄, xn+1 − x̄〉.(3.8)

It follows from (3.7), (3.8) and Lemma 2.4, that xn → x̄. This completes the
proof. �

Setting µ = λ in Theorem 3.4, we have following result.
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Corollary 3.5. Let C be a closed convex subset of a real Hilbert space H. Let

F1, F2 be two bifunctions from C×C → R satisfying (A1)-(A4). Let λ > 0 and

let S1,λ, S2,λ be defined as in Lemma 2.7 associated to F1, F2 respectively. Let

T be a nonexpansive mapping of C into itself such that F (T )∩Ω1 6= ∅. Suppose
x0 = x ∈ C and {xn}, {yn}, {zn} are given by

(3.9)










zn ∈ C;F2(zn, z) + ϕ(z)− ϕ(zn) +
1
λ
〈z − zn, zn − xn〉 ≥ 0, ∀ z ∈ C,

yn ∈ C;F1(yn, z) + ϕ(z)− ϕ(yn) +
1
λ
〈z − yn, yn − zn〉 ≥ 0, ∀ z ∈ C,

xn+1 = αnu+ (1− αn)Tyn,

for all n ∈ N, where {αn} ⊂ [a, b] for some a, b ∈ (0, 1). Then {xn} converges

strongly to x̄ = limn→∞ PF (T )∩Ωxn and (x̄, ȳ) is a solution of problem (1.7),
where ȳ = S2,λx̄.

Setting ϕ = 0 in Theorem 3.4, we have following result.

Corollary 3.6. Let C be a closed convex subset of a real Hilbert space H.

Let F1 and F2 be two bifunctions from C × C → R satisfying (A1)-(A4). Let

λ, µ > 0 and let T1,λ and T2,µ be defined as in Lemma 2.6 associated to F1 and

F2, respectively. Let S be a nonexpansive mapping of C into itself such that

F (S) ∩Ω1 6= ∅. Suppose x0 = x ∈ C and {xn}, {yn}, {zn} are given by

(3.10)











zn ∈ C;F2(zn, z) +
1
µ
〈z − zn, zn − xn〉 ≥ 0, ∀ z ∈ C,

yn ∈ C;F1(yn, z) +
1
λ
〈z − yn, yn − zn〉 ≥ 0, ∀ z ∈ C,

xn+1 = αnu+ (1− αn)Syn,

for all n ∈ N, where {αn} ⊂ [a, b] for some a, b ∈ (0, 1). Then {xn} converges

strongly to x̄ = limn→∞ PF (S)∩Ω1
xn and (x̄, ȳ) is a solution of problem (1.7),

where ȳ = T2,µx̄.
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