1 |
D. Bertsekas, J. Tsitsiklis, Parallel and Distributed Computation, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.
|
2 |
L.C. Ceng, C. Wang, J.C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res. 67 (2008), 375–390.
DOI
|
3 |
J.L. Lions, Parallel algorithms for the solution of variational inequalities, Interfaces Free Bound. 1 (1999), 13–16.
|
4 |
Y.P. Fang, N.J. Huang, H.B. Thompson, A new system of variational inclusions with (H, η)-monotone operators in Hilbert spaces, Comput. Math. Appl. 49 (2005), 365–374.
DOI
|
5 |
K.H. Hoffmann, J. Zou, Parallel algorithms of Schwarz variant for variational inequalities, Numer. Funct. Anal. Optim. 13 (1992), 449–462.
DOI
|
6 |
K.H. Hoffmann, J. Zou, Parallel solution of variational inequality problems with nonlinear source terms, IMA J. Numer. Anal. 16 (1996), 31–45.
DOI
|
7 |
S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274–276.
DOI
|
8 |
B.S. Thakur, M.S. Khan, S.M. Kang, Existence and approximation of solutions for system of generalized mixed variational inequalities, Fixed Point Theory Appl. 2013(108) (2013),15 pages.
DOI
|
9 |
R.U. Verma, On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. Sci. Res. 3 (1999), 65–68.
|
10 |
X.L. Weng, Fixed point iteration for local strictly pseudocontractive mapping, Proc. Amer. Math. Soc. 113 (1991), 727–731.
DOI
|
11 |
H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127–1138.
DOI
|
12 |
H. Yang, L. Zhou, Q. Li, A parallel projection method for a system of nonlinear variationalinequalities, Appl. Math. Comput. 217 (2010), 1971–1975.
DOI
|
13 |
Y. Yao, Y.C. Liou, S.M. Kang, Y. Yu, Algorithms with strong convergence for a system of nonlinear variational inequalities in Banach spaces, Nonlinear Anal. 74 (2011), 6024–6034.
DOI
|
14 |
J.U. Jeong, Iterative algorithm for a new system of generalized set-valued quasi-variational-like inclusions with (A, η)-accretive mappings in Banach spaces, J. Appl. Math. & Informatics 30 (2012), 935–950.
|