• Title/Summary/Keyword: variational approximation

Search Result 88, Processing Time 0.019 seconds

A Solution of Variational Inequalities and A Priori Error Estimations in Contact Problems with Finite Element Method (접촉문제에서의 변분부등식의 유한요소해석과 A Priori 오차계산법)

  • Lee, Choon-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2887-2893
    • /
    • 1996
  • Governing equations infrictional contact problems are introduced using variational inequality formulations which are regularized to overcome the diffculties of non-differentiability of the friction functional. Also finite element approximations and a priori error estimations are derived based on those formulations. Numerical simulations are performed illustrating the theoretical results.

THE ISOGEOMETRIC VARIATIONAL MULTISCALE METHOD FOR LAMINAR INCOMPRESSIBLE FLOW

  • Moulage, Yourself Gaffers;Ahn, Hyung-Taek
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.65-84
    • /
    • 2012
  • We present an application of the variational multiscale methodology to the computation of concentric annular pipe flow. Isogeometric analysis is utilized for higher order approximation of the solution using Non-Uniform Rational B-Splines (NURBS) functions. The ability of NURBS to exactly represent curved geometries makes NURBS-based isogeometric analysis attractive for the application to the flow through the curved channel.

ON NONLINEAR VARIATIONAL INCLUSIONS WITH ($A,{\eta}$)-MONOTONE MAPPINGS

  • Hao, Yan
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.159-169
    • /
    • 2009
  • In this paper, we introduce a generalized system of nonlinear relaxed co-coercive variational inclusions involving (A, ${\eta}$)-monotone map-pings in the framework of Hilbert spaces. Based on the generalized resol-vent operator technique associated with (A, ${\eta}$)-monotonicity, we consider the approximation solvability of solutions to the generalized system. Since (A, ${\eta}$)-monotonicity generalizes A-monotonicity and H-monotonicity, The results presented this paper improve and extend the corresponding results announced by many others.

APPROXIMATION OF SOLUTIONS FOR GENERALIZED WIENER-HOPF EQUATIONS AND GENERALIZED VARIATIONAL INEQUALITIES

  • Gu, Guanghui;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.465-472
    • /
    • 2010
  • The purpose of this article is to introduce a new generalized class of the Wiener-Hopf equations and a new generalized class of the variational inequalities. Using the projection technique, we show that the generalized Wiener-Hopf equations are equivalent to the generalized variational inequalities. We use this alternative equivalence to suggest and analyze an iterative scheme for finding the solution of the generalized Wiener-Hopf equations and the solution of the generalized variational inequalities. The results presented in this paper may be viewed as significant and improvement of the previously known results. In special, our results improve and extend the resent results of M.A. Noor and Z.Y.Huang[M.A. Noor and Z.Y.Huang, Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings, Appl. Math. Comput.(2007), doi:10.1016/j.amc.2007.02.117].

CONVERGENCE THEOREMS ON VISCOSITY APPROXIMATION METHODS FOR FINITE NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.85-98
    • /
    • 2009
  • Strong convergence theorems on viscosity approximation methods for finite nonexpansive mappings are established in Banach spaces. The main theorem generalize the corresponding result of Kim and Xu [10] to the viscosity approximation method for finite nonexpansive mappings in a reflexive Banach space having a uniformly Gateaux differentiable norm. Our results also improve the corresponding results of [7, 8, 19, 20].

  • PDF

GENERAL NONLINEAR VARIATIONAL INCLUSIONS WITH H-MONOTONE OPERATOR IN HILBERT SPACES

  • Liu, Zeqing;Zheng, Pingping;Cai, Tao;Kang, Shin-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.263-274
    • /
    • 2010
  • In this paper, a new class of general nonlinear variational inclusions involving H-monotone is introduced and studied in Hilbert spaces. By applying the resolvent operator associated with H-monotone, we prove the existence and uniqueness theorems of solution for the general nonlinear variational inclusion, construct an iterative algorithm for computing approximation solution of the general nonlinear variational inclusion and discuss the convergence of the iterative sequence generated by the algorithm. The results presented in this paper improve and extend many known results in recent literatures.

FUZZY GENERAL NONLINEAR ORDERED RANDOM VARIATIONAL INEQUALITIES IN ORDERED BANACH SPACES

  • Salahuddin, Salahuddin;Lee, Byung-Soo
    • East Asian mathematical journal
    • /
    • v.32 no.5
    • /
    • pp.685-700
    • /
    • 2016
  • The main object of this work to introduced and studied a new class of fuzzy general nonlinear ordered random variational inequalities in ordered Banach spaces. By using the random B-restricted accretive mapping with measurable mappings ${\alpha},{\alpha}^{\prime}:{\Omega}{\rightarrow}(0,1)$, an existence of random solutions for this class of fuzzy general nonlinear ordered random variational inequality (equation) with fuzzy mappings is established, a random approximation algorithm is suggested for fuzzy mappings, and the relation between the first value $x_0(t)$ and the random solutions of fuzzy general nonlinear ordered random variational inequality is discussed.

VISCOSITY METHODS OF APPROXIMATION FOR A COMMON SOLUTION OF A FINITE FAMILY OF ACCRETIVE OPERATORS

  • Chen, Jun-Min;Zhang, Li-Juan;Fan, Tie-Gang
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.11-21
    • /
    • 2011
  • In this paper, we try to extend the viscosity approximation technique to find a particular common zero of a finite family of accretive mappings in a Banach space which is strictly convex reflexive and has a weakly sequentially continuous duality mapping. The explicit viscosity approximation scheme is proposed and its strong convergence to a solution of a variational inequality is proved.

GENERALIZED SYSTEMS OF RELAXED $g-{\gamma}-r-COCOERCIVE$ NONLINEAR VARIATIONAL INEQUALITIES AND PROJECTION METHODS

  • Verma, Ram U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.83-94
    • /
    • 2003
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Approximation solvability of a system of nonlinear variational inequality (SNVI) problems, based on the convergence of projection methods, is given as follows: find elements $x^*,\;y^*{\in}H$ such that $g(x^*),\;g(y^*){\in}K$ and $$<\;{\rho}T(y^*)+g(x^*)-g(y^*),\;g(x)-g(x^*)\;{\geq}\;0\;{\forall}\;g(x){\in}K\;and\;for\;{\rho}>0$$ $$<\;{\eta}T(x^*)+g(y^*)-g(x^*),\;g(x)-g(y^*)\;{\geq}\;0\;{\forall}g(x){\in}K\;and\;for\;{\eta}>0,$$ where T: $H\;{\rightarrow}\;H$ is a relaxed $g-{\gamma}-r-cocoercive$ and $g-{\mu}-Lipschitz$ continuous nonlinear mapping on H and g: $H{\rightarrow}\;H$ is any mapping on H. In recent years general variational inequalities and their algorithmic have assumed a central role in the theory of variational methods. This two-step system for nonlinear variational inequalities offers a great promise and more new challenges to the existing theory of general variational inequalities in terms of applications to problems arising from other closely related fields, such as complementarity problems, control and optimizations, and mathematical programming.

  • PDF

A GENERAL VISCOSITY APPROXIMATION METHOD OF FIXED POINT SOLUTIONS OF VARIATIONAL INEQUALITIES FOR NONEXPANSIVE SEMIGROUPS IN HILBERT SPACES

  • Plubtieng, Somyot;Wangkeeree, Rattanaporn
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.717-728
    • /
    • 2008
  • Let H be a real Hilbert space and S = {T(s) : $0\;{\leq}\;s\;<\;{\infty}$} be a nonexpansive semigroup on H such that $F(S)\;{\neq}\;{\emptyset}$ For a contraction f with coefficient 0 < $\alpha$ < 1, a strongly positive bounded linear operator A with coefficient $\bar{\gamma}$ > 0. Let 0 < $\gamma$ < $\frac{\bar{\gamma}}{\alpha}$. It is proved that the sequences {$x_t$} and {$x_n$} generated by the iterative method $$x_t\;=\;t{\gamma}f(x_t)\;+\;(I\;-\;tA){\frac{1}{{\lambda}_t}}\;{\int_0}^{{\lambda}_t}\;T(s){x_t}ds,$$ and $$x_{n+1}\;=\;{\alpha}_n{\gamma}f(x_n)\;+\;(I\;-\;{\alpha}_nA)\frac{1}{t_n}\;{\int_0}^{t_n}\;T(s){x_n}ds,$$ where {t}, {${\alpha}_n$} $\subset$ (0, 1) and {${\lambda}_t$}, {$t_n$} are positive real divergent sequences, converges strongly to a common fixed point $\tilde{x}\;{\in}\;F(S)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)\tilde{x},\;x\;-\;\tilde{x}{\rangle}\;{\leq}\;0$ for $x\;{\in}\;F(S)$.