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APPROXIMATION OF SOLUTIONS FOR GENERALIZED
WIENER-HOPF EQUATIONS AND GENERALIZED
VARIATIONAL INEQUALITIES
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ABSTRACT. The purpose of this article is to introduce a new generalized
class of the Wiener-Hopf equations and a new generalized class of the
variational inequalities. Using the projection technique, we show that
the generalized Wiener-Hopf equations are equivalent to the generalized
variational inequalities. We use this alternative equivalence to suggest
and analyze an iterative scheme for finding the solution of the gener-
alized Wiener-Hopf equations and the solution of the generalized varia-
tional inequalities. The results presented in this paper may be viewed
as sigpnificant and improvement of the previously known results. In spe-
cial, our results improve and extend the resent results of M.A. Noor and
Z.Y .Huang[M.A. Noor and Z.Y.Huang, Wiener-Hopf equation technique
for variational inequalities and nonexpansive mappings, Appl. Math. Com-
put.(2007), doi:10.1016/j.amc.2007.02.117 |.
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1. Introduction and preliminaries

Variational inequalities introduced by Stampacchia [17] in the early sixties
have enjoyed vigorous growth for the last thirty years. Variational inequality
theory describes a broad spectrum of interesting and important developments
involving a link among various fields of mathematics, physics, economics and en-
gineering sciences [1-20]. A general variational inequality is introduced by Noor
in 1988 [1]. It turned out that the odd-order and nonsymmetric free, moving,
unilateral obstacle and equilibrium can be studied via the general variational
inequality approach. Projection methods and their variant forms including the
Wiener-Hopf equations are being used to develop various numerical methods for
solving variational inequalities. The purpose of this article is to introduce a new
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generalized class of the Wiener-Hopf equations and a new generalized class of
the variational inequalities. Using the projection technique, we show that the
generalized Wiener-Hopf equations are equivalent to the generalized variational
inequalities. We use this alternative equivalence to suggest and analyze an iter-
ative scheme for finding the solution of the generalized Wiener-Hopf equations
and the solution of the generalized variational inequalities. The results presented
in this paper may be viewed as significant and improvement of the previously
known results. In special, our results improve and extend the resent results of
M.A. Noor and Z.Y.Huang[20] in several respects:

(i) The results of this paper improve and extend the results in [20];

(ii) We have used more meticulous method of proofs;

(iii) We have modified some fuzzy contents in [20].

Let K be a nonempty closed and convex subset in a Hilbert space H, whose
inner product and norm are denoted by (-, -} and ||-|| respectively. Let T : H — H
be a nonlinear operator, S : K — K and A : H — H be two nonexpansive
mappings. Let Px be the metric projection of H onto the K.

In 1964. Stampacchia [17] considered the problem of finding u € K such that

(Tu,v—u) >0, YveK, (1)

which is known as the classical variational inequality. It is obvious that, the (1)
is equivalent to
(pTu,v—u) >0, Yve K (2)
where p > 0 is a any positive real constant.
Related to the variational inequality (1), the following original Wiener-Hopf
equation introduced and studied by Shi [16]. Shi considered the problem of
finding z € H such that

TPyz+ p 'Qgz =0, (3)

where Qg = I — Pg. It is well known that, the classical variational inequality
(1) is equivalent to the original Wiener-Hopf equation (3).

The Wiener-Hopf equation technique has been used to study the sensitivity
analysis and asymptotical stability of the variational inequalities, see [2,5,6,15,
16, 20]. It has been shown that, the Wiener-Hopf equation technique is more
flexible and general than the projection method and its variant form.

Very resent, in 2007 Noor and Huang [20] introduced and studied the following
Wiener-Hopf equation which involving a nonexpansive mapping S : K — K.
They considered the problem of finding z € H such that

TSPrz+p 1Qkz=0. (4)

They also considered the problem of finding the fixed points of S with together
the Wiener-Hopf equation (4) and variational inequality (1).

In this paper, we consider a new generalized variational inequality problem
of finding u € K such that

(u— AJu— pTu},v—u) >0, VveK, p>0, (5)
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which involving the nonexpansive mapping A. When A = [ is the identity
operator, the new generalized variational inequality (5) reduce the special form
(1). Related to the variational inequality (5), in this paper, we also consider a
new generalized Wiener-Hopf equation problem of finding 2z € H such that

ZZA[SPKZ—pTSPKZ], p >0, (6)

where S : K — K is a nonexpansive mapping. When § = [ is the identity
operator, the above generalized Wiener-Hopf equation (6) reduce the following
form

z=A[Pgz— pTPkz]. p> 0. (7
When A = T is the identity operator and let Qx = I — SPx, the Wiener-Hopf
equation (7) reduce the original Wiener-Hopf equation (3) which was introduced
and studied by Shi [16].

We shall show that, the generalized variational inequality (5) is equivalent
to the generalized Wiener-Hopf equation (6). This equivalence has played a
fundamental and basic role in developing some efficient and robust methods for
solving variational inequalities and related optimization problems.

Definition 1.1. A mapping T : H — H is called p—Lipschitzian if there exists
a constant p > 0 such that

1Tz —Ty|| < plle—yll, Va,yeH.

Definition 1.2. A mapping T : H — H is called a—inverse strongly monotone
if there exists a constant o > 0 such that

<T.’E - Ty,x - y> Z a“T‘T - Ty“25 v r,y€ H.
Definition 1.3. A mapping T : H — H is called r—strongly monotone if there
exists a constant » > 0 such that

<TI - Ty,a: - y> z TH$ - yH27 v T,y € H.
Definition 1.4. A mapping T : K — H is called relaxed (v, r)—cocoercive if
there exists a constants v > 0,7 > 0 such that

(Ta ~ Ty, ) 2 (~)|Ta ~ Tyl +rllz —y|?, Yzye kK.

Remark. Clearly a r—strongly monotone mapping must be relaxed (vy,r) -
cocoercive mapping, or a y—inverse strongly monotone must be a relaxed (v, r)
- cocoercive mapping whenever r = 0, but the converse is not true. Therefore
the class of the relaxed (v, r)-cocoercive mappings is most general class, and
hence Definition 1.6 both Definition 1.4 and Definition 1.5 as special cases.

The following Lemma is well known.
Lemma 1.5. Suppose {an,} is a nonnegative real sequence satisfying the follow-
ing condition
anti S (1 - )\n)am
with A, € [0,1], 307, A, = co. Then ap, — 0 as n — 0.

n=1
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2. Main results

Theorem 2.1.

(i) If element u € K is a solution of the generalized variational inequality (5),
then z = Alu — pTu] satisfies the Wiener-Hopf equation (7) and u = Py z;

(i1) If z € H satisfies the Wiener-Hopf equation (7), then uw = Pz is a
solution of the generalized variational inequality(5).

Proof. (i) If u € K is a solution of the generalized variational inequality (5),
then

u = P Alu — pTu],
which leads to u = Pgz. Hence

z = Alu— pTu] = A[Pgz — pT P 2].

Namely, z = A[u — pTu] satisfies the Wiener-Hopf equation (7). In addition, it
is easy to see that, u is a solution of the generalized variational inequality (5)
if and only if u = Px Alu — pTu]. This together with z = Afu — pTu] implies
u=P KZ.

(ii) If z € H satisfies the Wiener-Hopf equation (7), then we have

PKZ = PKA[PKZ - pTPKZ].
Let u = Pk z, hence
u = PgAlu — pTul

It is obvious that, u is a solution of the generalized variational inequality (5).
This completes the proof. O

Corollary 2.2.

(i) If element uw € K is a solution of the variational inequality (1), then
z = [u — pTu] satisfies the Wiener-Hopf equation (3);

(i) If = € H satisfies the Wiener-Hopf equation (3), then u = Pkz is a
solution of the variational inequality(1).

Proof. Observe that, take A is equal the identity operator I, the generalized
variational inequality (5) become the variational inequality (1) and the Wiener-
Hopf equation (7) become the Wiener-Hopf equation (3). By using Theorem 2.1
we obtain the conclusion of Corollary 2.2.

Theorem 2.3.

(i) If element u € K is a solution of the generalized variational inequality (5)
and u € F(S), then z = Alu — pTu| satisfies the Wiener-Hopf equation (6) and
Prz € F(S),

(#%) If z € H satisfies the Wiener-Hopf equation (6) and Pxz € F(S), then
u = Pk z is a solution of the generalized variational inequality (5) and u € F(S).

Proof. (i) If u € K is a solution of the generalized variational inequality (5),
then
u = Pg Alu — pTul,
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which leads to u = Pxz = SPgz. Hence
z = Alu— pTu] = Sk [SPkz — pTSPkz].

Namely, 2 = Afu — pTu] satisfies the Wiener-Hopf equation (6) and Pxz =
SPKZ.
(ii) If 2 satisfies the Wiener-Hopf equation (6), then we have

z = A[SPkz — pT'SPk 2],
which leads to
Py z = Py A[SPyz — pT'SPk z].
This together with Prz € F(S) implies that
SPyz = P A[SPxz — pTSPx 2].

Let w = Pgz. Hence u = PKA[u—pTu]. It is obvious that, u = Pk z is a solution
of the generalized variational inequality (5) and u € F(S). This completes the
proof. O

Algorithm 2.4. For a given 2y € H, compute the approximate solution z,;
by the following scheme

Un = Przn, zni1 = (1 — an)zn + anAlun — pTun). (8)

Theorem 2.5. Let T be a relazed (v, r)~—cocoercive and p— Lipschitzian map-
ping. Let {z,} be a sequence defined by Algorithm 2.4, for any initial point
zo € H, with conditions

2 . 2
0<p<Lﬂ2w—)7 WP <,

{an} C[0,1] and Y57 | an = co. Then {2,} converges strongly to the unique
solution of Wiener-Hopf equation (7), and {u,} converges strongly to the unique
solution of variational inequality (5). Where {u,} and {z,} are defined by the
Algorithm 2.4.

Proof. Let u* be a any solution of generalized variational inequality (5), from
Theorem 2.1, we know that,

Z* = Alu* — pTu*], (9)

is a solution of Wiener-Hopf equation (7) and u* = Py z*. From (8) and (9), we
have

lzn1 = 2% = (1 — an)zn + anAluy, — pPTun] — (1 = an)2* + anAlu* — pTu*]||
< (I =an)lizn = 2"[| + an || Alun — pTun] — Afu™ — pTu"]|
< (I =an)llzn = 2"l + anllun — u* = (pTun — pTu")|. (10)
From the relaxed (v, r)—cocoercive and pu~Lipschitzian on T', we have
[[un =" —(pTun—pTu*) | = [ —u*|*=2p(Tun—Tu*, up=1u*)+p? | Tun—Tu*||?
< ln = w1 = 2p[ =T, = T |2 + rllin — u|]) + | Tt — Tus* |
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< flun = w12 + 209l — w2 = 20r e, — u* | + o2 un — w2
= (1+ 200 — 2o + P Jum — w7 = 6ffun — u"|2, (11)

where

0 = 1+ 2pyp® — 2pr + p2pi2. (12)
It follows from the condition of Theorem 2.5 that § < 1. Combining (10) and
(11), we have

lznt1 = 2"l < (1 = an)llzn — 27|| + @nbllun — u*|. (13)
From (8) and u* = Pk z* we have

lun —w*|| < | Przn — Pxz"|| < ll2n — 27| (14)
Substituting the (14) into (13), we obtain

lznt1 = 2%l < (1 = an)llzn — 2%[| + anbllzn — 2"

S[1-an(-0)llzn — 2",
and hence by Lemma 1.7, {z,} converges strongly to z*. Therefore, observe (14)
we also claim that, {u,} converges strongly to u*. Because the choice of solution
u* € K is arbitrary, then we claim that, the generalized variational inequality (5)
has unique solution u* € K. We also claim that, the Wiener-Hopf equation (7)
has unique solution 2* = A[u* — pTu*]. If not, then the Wiener-Hopf equation
(7) has another solution z** # z*, by using the conclusion (ii) of Theorem 2.1,
we know u* = Py z**, so that Pxz* = Pxz** and
2* = A[Pkz* — pTPxz*], z** = A[Pxz*" — pT Pxz**],
which implies z* = z**. This is a contradiction. This completes the proof. O
From Theorem 2.1 and Theorem 2.5, we have the following result.

Theorem 2.6. Under the conditions of Theorem 2.5, the following conclusions
hold:

(¢) The generalized variational inequality (5) has a unique solution:

(43) The Wiener-Hopf equation (7) has a unique solution;

(#43) The element u € K is a solution of the generalized variational inequality
(5) if and only if z € H satisfies the Wiener-Hopf equation (7), where

z=Alu— pTu], u= Pgz.

Observe that S : K — K is a nonexpansive maping with fixed point set F(S).
By using the similar ways as in the Theorem 2.1 and Theorem 2.5, the following
Theorem 2.7 and Theorem 2.8 are not hard to prove.

Theorem 2.7.

(i) If element u € F(S) C K is a solution of the generalized variational
inequality (5), then z = Alu — pTu] = A[Su — pT Su] satisfies the Wiener-Hopf
equation (6) and u = Pz = SPkz;
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(it) If z € H satisfies the Wiener-Hopf equation (6) and Pxz € F(S), then
u= Pz = 5Pkz is a solution of the generalized variational inequality(5).

Theorem 2.8. Let T be a relaxed (v, r)—cocoercive and p— Lipschitzian map-
ping. Let {z,} be a sequence defined by Algorithm 2.4, for any initial point
zo € H, with conditions

2(r —yp?
0<p<(727“), e <,
7

{an} € {0,1] and 307 an = co. If F(S)NGVI(5) # 0. Then {z,} converges
strongly to the unique solution of Wiener-Hopf equation (7), and {u,} converges
strongly to the unique common element of F(S)NGVI(5). Where GVI(5) denote
the set of solutions of the generalized variational inequality (5) and {un}, {zn}
are defined by the Algorithm 2.4.

Remark. If choice the nonexpansive mapping A in generalized variational in-
equalities and generalized Wiener-Hopf equations is equal the identity operator,
the results of this paper reduce the results of M.A.Noor and Z.Y.Huang [20].
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