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A GENERAL VISCOSITY APPROXIMATION METHOD OF
FIXED POINT SOLUTIONS OF VARIATIONAL

INEQUALITIES FOR NONEXPANSIVE SEMIGROUPS IN
HILBERT SPACES

Somyot Plubtieng and Rattanaporn Wangkeeree

Abstract. Let H be a real Hilbert space and S = {T (s) : 0 ≤ s < ∞}
be a nonexpansive semigroup on H such that F (S) ̸= ∅. For a contraction
f with coefficient 0 < α < 1, a strongly positive bounded linear operator

A with coefficient γ̄ > 0. Let 0 < γ < γ̄
α

. It is proved that the sequences

{xt} and {xn} generated by the iterative method

xt = tγf(xt) + (I − tA)
1

λt

Z λt

0
T (s)xtds,

and

xn+1 = αnγf(xn) + (I − αnA)
1

tn

Z tn

0
T (s)xnds,

where {t}, {αn} ⊂ (0, 1) and {λt}, {tn} are positive real divergent se-

quences, converges strongly to a common fixed point x̃ ∈ F (S) which
solves the variational inequality ⟨(γf − A)x̃, x − x̃⟩ ≤ 0 for x ∈ F (S).

1. Introduction

Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H. A mapping T of C into itself is said to be nonexpansive if ∥Tx − Ty∥ ≤
∥x−y∥ for each x, y ∈ C. We denote F (T ) the set of fixed points of T . A family
S = {T (s) : 0 ≤ s < ∞} of mapping of C into itself is called a nonexpansive
semigroup on C if it satisfies the following conditions:

(i) T (0)x = x for all x ∈ C;
(ii) T (s + t) = T (s)T (t) for all s, t ≥ 0;
(iii) ∥T (s)x − T (s)y∥ ≤ ∥x − y∥ for all x, y ∈ C and s ≥ 0;
(iv) for all x ∈ C, s 7→ T (s)x is continuous.

We denote by F (S) the set of all common fixed points of S, that is, F (S) =
{x ∈ C : T (s)x = x for all s ∈ S}. It is known that F (S) is closed and convex.
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Construction of fixed points of nonexpansive mappings (and of common fixed
points of nonexpansive semigroups) is an important subject in the theory of
nonexpansive mappings and finds application in number of applied areas, in
particular, in the minimization problem (see, e.g. [4, 14, 15, 16, 17]) and the
references therein. A typical problem is to minimize a quadratic function over
the set of the fixed points of a nonexpansive mapping on a real Hilbert space
H:

(1.1) min
x∈C

1
2
⟨Ax, x⟩ − ⟨x, b⟩,

where C is the fixed point set of a nonexpansive mapping T on H and b is a
given point in H.

In 2003, Xu ([15]) proved that the sequence {xn} defined by the iterative
method below, with the initial guess x0 ∈ H chosen arbitrarily:

(1.2) xn+1 = (I − αnA)Txn + αnb, n ≥ 0,

converges strongly to the unique solution of the minimization problem (1.1)
provided the sequence {αn} satisfies certain conditions that will be made precise
in Section 3.

In [6], Moudafi introduced the viscosity approximation method for nonex-
pansive mappings (see [13] for further developments in both Hilbert and Banach
spaces). Let f be a contraction on H. Starting with an arbitrary initial x0 ∈ H,
define a sequence {xn} recursively by

(1.3) xn+1 = (1 − σn)Txn + σnf(xn), n ≥ 0,

where {σn} is a sequence in (0, 1). It is proved [6, 13] that under certain
appropriate conditions imposed on {σn}, the sequence {xn} generated by (1.3)
strongly converges to the unique solution x∗ in C of the variational inequality

(1.4) ⟨(I − f)x∗, x − x∗⟩ ≥ 0, x ∈ C.

Recently, Marino and Xu [5] proved the sequence {xn} generated by the
iterative method xn+1 = (I − αnA)Txn + αnγf(xn), converges strongly to a
fixed point x̃ ∈ F (T ) which solves the variational inequality

(1.5) ⟨(A − γf)x∗, x − x∗⟩ ≥ 0 for x ∈ F (T ).

On the other hand, Browder [3] showed the following convergence theorem
for a nonexpansive mapping: Let T be a nonexpansive mapping from C into
itself such that the set F (T ) is nonempty. For each t with 0 < t < 1, let u ∈ C
and xt be an element of C satisfying

(1.6) xt = tu + (1 − t)Txt.

Then {xt} converges strongly to the element of F (T ) which is nearest to x
in F (T ) as t ↓ 0. This result was extended to a Banach space by Reich [8]
and Takahashi and Ueda [12]. Baillon [1] proved the first nonlinear ergodic
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theorem: If T is a nonexpansive mapping from C into itself such that the set
F (T ) is nonempty and x ∈ C, the Cesâro mean

(1.7) Snx =
1
n

n−1∑
k=0

T kx

converges weakly to a fixed point of T . Later, Baillon and Brezis [2] prove
that if S = {T (s) : 0 ≤ s < ∞} is a nonexpansive semigroup on C, then the
continuous scheme

(1.8) xt =
1
t

∫ t

0

T (s)xtds, t ∈ (0, 1),

converges weakly to a common fixed point of S. Those results have been
generalized by several authors; see, for instance Takahashi [11]. Very recently,
Plubtieng and Punpaeng [7] considered the iteration process {xn}, where x0 ∈
C is arbitrary and

xn+1 = αnf(xn) + βnxn + (1 − αn − βn)
1
tn

∫ tn

0

T (s)xnds

for n ≥ 0, where {αn}, {βn} ⊂ (0, 1) with αn + βn < 1 and {tn} is a positive
real divergent sequence. They proved, under certain appropriate conditions on
{αn}, that {xn} converges strongly to a common fixed point of S.

The purpose of this paper is, by using the viscosity method for nonexpansive
semigroups S = {T (s) : 0 < s < ∞} on H, to study the continuous scheme
{xt} and the iterative scheme {xn} defined as follows: Let T : H → H be a
nonexpansive mapping. For a given contraction f with coefficient 0 < α < 1, a
strongly positive bounded linear operator A with coefficient γ̄ > 0, 0 < γ < γ̄

α
and t ∈ (0, 1), we define a contraction mapping Tt : H → H by

(1.9) Ttx = tγf(x) + (I − tA)
1
λt

∫ λt

0

T (s)xds, ∀x ∈ H,

where {λt} is a positive real divergent net. By Banach’s contraction principle
it yields a unique fixed point xt ∈ H of Tt, i.e., xt is the unique solution of the
fixed point equation

(1.10) xt = tγf(xt) + (I − tA)
1
λt

∫ λt

0

T (s)xtds.

A special case of (1.10) has been considered by Shioji and Takahashi [10] as
follows:

(1.11) xn = αnu + (I − αnA)
1
tn

∫ tn

0

T (s)xnds for n ∈ N,

where {αn} ⊂ (0, 1) and {tn} is a positive real divergent sequence.
Further, we also study an iteration process {xn} defined by

(1.12) xn+1 = αnγf(xn) + (I − αnA)
1
tn

∫ tn

0

T (s)xnds, n ≥ 0,
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where x0 ∈ H, {αn} is a sequence in (0, 1) and {tn} is a positive real divergent
sequence.

A special case of (1.12) was considered by Shimizu and Takahashi [9] who
introduced following iterative process:

(1.13) xn+1 = αnu + (1 − αn)
1
tn

∫ tn

0

T (s)xnds, n ≥ 0,

where u, x0 ∈ H are arbitrary (but fixed), {αn} ⊂ (0, 1) and {tn} is a positive
real divergent sequence.

The purpose of this paper is to prove the strong convergence of the contin-
uous scheme {xt} defined by (1.10) and the iterative scheme {xn} defined by
(1.12) in a real Hilbert space. The results presented in this paper extend and
improve the corresponding ones announced by Shioji and Takahashi [10] and
Shimizu and Takahashi [9], and others.

2. Preliminaries

Let H be a real Hilbert space with norm ∥ · ∥ and inner product ⟨·, ·⟩ and let
C be a closed convex subset of H. Recall the metric (nearest point) projection
PC from a Hilbert space H to a closed convex subset C of H is defined as
follows: Given x ∈ H, PCx is the only point in C with the property

∥x − PCx∥ = inf{∥x − y∥ : y ∈ C}.

PCx is characterized as follows.
Throughout the rest of this paper, we always assume that A is strongly

positive; that is, there is a constant γ̄ > 0 such that

(2.1) ⟨Ax, x⟩ ≥ γ̄∥x∥2, x ∈ H.

(Note: γ̄ > 0 is throughout reserved to be the constant such that (2.1) holds.)
Recall also that a contraction on H is a self-mapping f of H such that

(2.2) ∥fx − fy∥ ≤ α∥x − y∥, x, y ∈ H,

where α ∈ [0, 1) is a constant.
We need some facts and tools in a Hilbert space H which are listed as lemmas

below.

Lemma 2.1. Let H be a real Hilbert space, C a closed convex subset of H.
Given x ∈ H and y ∈ C. Then y = PCx if and only if there holds the inequality

⟨x − y, y − z⟩ ≥ 0, ∀z ∈ C.

Lemma 2.2. Let H be a Hilbert space, C a closed convex subset of H, and
T : C → C a nonexpansive mapping with F (T ) ̸= ∅. If {xn} is a sequence in C
weakly converging to x ∈ C and if {(I − T )xn} converges strongly to y. Then
(I − T )x = y.
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Lemma 2.3 ([13]). Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1 − αn)an + δn, n ≥ 0
where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(2) lim supn→∞

δn

αn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ an = 0.

Lemma 2.4 ([13]). Let H be a Hilbert space, C a nonempty closed convex
subset of H, and f : C → C a contraction with coefficient α < 1. Then

⟨x − y, (A − γf)x − (A − γf)y⟩ ≥ (γ̄ − γα)∥x − y∥2, x, y ∈ C.

Lemma 2.5 ([5]). Assume A is a strongly positive linear bounded operator on
a Hilbert space H with coefficient γ̄ > 0 and 0 < ρ ≤ ∥A∥−1. Then ∥I − ρA∥ ≤
1 − ργ̄.

Lemma 2.6 ([9]). Let C be a nonempty bounded closed convex subset of H
and let S = {T (s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C. Then, for
any h ≥ 0,

lim
t→∞

sup
x∈C

∥1
t

∫ t

0

T (s)xds − T (h)(
1
t

∫ t

0

T (s)xds)∥ = 0.

3. Main results

In this section, we prove two strong convergence theorems of the continuous
scheme {xt} defined by (1.10) and the iterative scheme {xn} defined by (1.12).

Theorem 3.1. Let H be a real Hilbert space H and S = {T (s) : 0 ≤ s < ∞}
be a nonexpansive semigroup on H such that F (S) ̸= ∅. Let A be a bounded
linear operator on H, and let t ∈ (0, 1) such that t ≤ ∥A∥−1 and 0 < γ < γ̄

α
which satisfies t → 0. Then for a contraction mapping f : H → H with
coefficient α ∈ (0, 1), the sequence {xt} defined by (1.10) with λt is a positive
real divergent sequence, converges strongly to x̃, x̃ is the unique solution in
F (S) of the variational inequality

(3.1) ⟨(A − γf)x̃, x − x̃⟩ ≥ 0, x ∈ F (S)

or equivalently x̃ = PF (S)(I−A+γf)x̃, where P is a metric projection mapping
from H onto F (S).

Proof. Observe that for t ∈ (0, ∥A∥−1), we have ∥I−tA∥ ≤ 1−tγ̄ by Lemma 2.5.
Let q ∈ F (S). We note that

∥xt − q∥ = ∥tγf(xt) + (I − tA)
1
λt

∫ λt

0

T (s)xtds − q∥

≤ t∥γf(xt) − Aq∥ + ∥I − tA∥ 1
λt

∫ λt

0

∥T (s)xt − q∥ds
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≤ t∥γf(xt) − Aq∥ + (1 − tγ̄)∥xt − q∥
≤ t∥γ(f(xt) − f(q)) + (γf(q) − Aq)∥ + (1 − tγ̄)∥xt − q∥
≤ t

(
γα∥xt − q∥ + ∥γf(q) − Aq∥

)
+ (1 − tγ̄)∥xt − q∥

= (1 − t(γ̄ − γα))∥xt − q∥ + t∥γf(q) − Aq∥.

It follows that

∥xt − q∥ ≤ ∥γf(q) − Aq∥
γ̄ − γα

.

Hence {xt} is bounded, and so is {f(xt)}. Further, we note that

(3.2)

∥T (h)xt − xt∥ = ∥T (h)xt − T (h)(
1
λt

∫ λt

0

T (s)xtds)∥

+ ∥T (h)(
1
λt

∫ λt

0

T (s)xtds) − 1
λt

∫ λt

0

T (s)xtds∥

+ ∥ 1
λt

∫ λt

0

T (s)xtds − xt∥

≤ 2∥ 1
λt

∫ λt

0

T (s)xtds − xt∥

+ ∥T (h)(
1
λt

∫ λt

0

T (s)xtds) − 1
λt

∫ λt

0

T (s)xtds∥

for every 0 ≤ h < ∞. On the other hand, we note that

(3.3) ∥ 1
λt

∫ λt

0

T (s)xtds − xt∥ = t∥A(
1
λt

∫ λt

0

T (s)xtds) − γf(xt)∥

for every t > 0. Let z0 ∈ F (S) and D = {z ∈ H : ∥z − z0∥ ≤ 1
γ̄−γα∥γf(z0) −

Az0∥}. Then, D is a nonempty closed bounded convex subset of C which is
T (s)-invariant for each s ∈ [0,∞) and contains {xt}, it follows by Lemma 2.6
that

(3.4) lim
λt→∞

∥T (h)(
1
λt

∫ λt

0

T (s)xtds) − 1
λt

∫ λt

0

T (s)xtds∥ = 0

for every 0 ≤ h < ∞. By (3.2)-(3.4) and t → 0, we obtain

∥T (h)xt − xt∥ → 0

for each 0 ≤ h < ∞. Assume {tn}∞n=1 ⊂ (0, 1) is such that tn → 0 as n → ∞.
Put xn := xtn and λn := λtn . We will show that {xn} contains a subse-
quence converging strongly to x̃, where x̃ ∈ F (S) is the unique solution of
the variational inequality (3.1). Since {xn} is a bounded sequence, there is a
subsequence {xnj} of {xn} which converges weakly to x̃ ∈ H. By Lemma 2.2,
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we have x̃ ∈ F (S). For each n ≥ 1, we note that

xn − x̃ = tn(γf(xn) − Ax̃) + (I − tnA)(
1
λn

∫ λn

0

T (s)xnds − x̃).

Thus, we have

∥xn − x̃∥2

= tn⟨γf(xn) − Ax̃, xn − x̃⟩ + ⟨(I − tnA)
( 1
λn

∫ λn

0

T (s)xnds − x̃
)
, xn − x̃⟩

≤ tn⟨γf(xn) − Ax̃, xn − x̃⟩ + ∥I − tnA∥∥ 1
λn

∫ λn

0

(T (s)xn − x̃)ds∥∥xn − x̃∥

≤ tn⟨γf(xn) − Ax̃, xn − x̃⟩ + (1 − tnγ̄)∥xn − x̃∥( 1
λn

∫ λn

0

∥T (s)xn − x̃∥ds)

≤ tn⟨γf(xn) − Ax̃, xn − x̃⟩ + (1 − tnγ̄)∥xn − x̃∥( 1
λn

∫ λn

0

∥xn − x̃∥ds)

≤ tn⟨γf(xn) − Ax̃, xn − x̃⟩ + (1 − tnγ̄)∥xn − x̃∥2.

Hence

∥xn − x̃∥2 ≤ 1
γ̄
⟨γf(xn) − Ax̃, xn − x̃⟩

=
1
γ̄
{γ⟨f(xn) − f(x̃), xn − x̃⟩ + ⟨γf(x̃) − Ax̃, xn − x̃⟩}

≤ 1
γ̄
{γα∥xn − x̃∥2 + ⟨γf(x̃) − Ax̃, xn − x̃⟩}.

This implies that

∥xn − x̃∥2 ≤ 1
γ̄ − γα

⟨γf(x̃) − Ax̃, xn − x̃⟩.

In particular, we have

(3.5) ∥xnj − x̃∥2 ≤ 1
γ̄ − γα

⟨γf(x̃) − Ax̃, xnj − x̃⟩.

Since xnj ⇀ x̃, it follows from (3.5) that xnj → x̃ as j → ∞. Next, we show
that x̃ ∈ F (S) solves the variational inequality (3.1). Indeed, we note that xt

solves the fixed point equation

xt = tγf(xt) + (I − tA)
1
λt

∫ λt

0

T (s)xtds.

Thus, we have

(A − γf)xt = −1
t
(I − tA)(xt −

1
λt

∫ λt

0

T (s)xtds).
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Since I − T is monotone (i.e., ⟨x − y, (I − T )x − (I − T )y⟩ ≥ 0 for x, y ∈ H),
it follows that, for each q ∈ F (S) and for all t > 0,

(3.6)

⟨(A − γf)xt, xt − q⟩

= − 1
t
⟨(I − tA)(xt −

1
λt

∫ λt

0

T (s)xtds), xt − q⟩

= − 1
t
⟨(I − tA)(

1
λt

∫ λt

0

xtds − 1
λt

∫ λt

0

T (s)xtds), xt − q⟩

= − 1
t
⟨ 1
λt

∫ λt

0

(I − T (s))xtds − 1
λt

∫ λt

0

(I − T (s))qds, xt − q⟩

+ ⟨A
( 1
λt

∫ λt

0

(I − T (s))xtds
)
, xt − q⟩

= − (
1
t
)

1
λt

∫ λt

0

⟨(I − T (s))xt − (I − T (s))q, xt − q⟩ds

+ ⟨A
( 1
λt

∫ λt

0

(I − T (s))xtds
)
, xt − q⟩

≤ ⟨A
( 1
λt

∫ λt

0

(I − T (s))xtds
)
, xt − q⟩.

Now replacing t and λt in (3.6) with tnj and λnj , respectively, and letting
j → ∞, we noticing that (I − T (s))xnj

→ (I − T (s))x̃ = 0 for x̃ ∈ F (S). This
implies that

(3.7) ⟨(A − γf)x̃, x̃ − q⟩ ≤ 0, ∀q ∈ F (S).

That is, x̃ is a solution of (3.1). We next to show that the net {xt} convergence
strongly to x̃. Assume that there is a sequence kn ⊂ (0, 1) such that xkn → x′,
where kn → 0. We note Lemma 2.2 that x′ ∈ F (S). It follows from the
inequality (3.7) that

(3.8) ⟨(A − γf)x̃, x̃ − x′⟩ ≤ 0.

Interchange x̃ and x′ to obtain

(3.9) ⟨(A − γf)x′, x′ − x̃⟩ ≤ 0.

Adding (3.8) and (3.9) and by Lemma 2.4, we get

(γ̄ − γα)∥x̃ − x′∥2 ≤ ⟨x̃ − x′, (A − γf)x̃ − (A − γf)x′⟩ ≤ 0.

By Lemma 2.4, we have x̃ = x′. Hence {xt} converges strongly to x̃. ¤

Fix u ∈ C ⊆ H, taking f(x) = u for all x ∈ H, A = I and γ = 1 in
Theorem 3.1, we get the following corollary.

Corollary 3.2 (Shioji and Takahashi[10]). Let C be a closed convex subset
of a Hilbert space H. Let S = {T (s) : 0 ≤ s < ∞} be a strongly continuous
semigroup of nonexpansive mapping on C such that F (S) ̸= ∅. Let {αn} and
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{tn} be positive sequences of real numbers satisfying 0 < αn < 1, limn→∞ αn =
0 and limn→∞ tn = ∞. Fix u ∈ C and define a sequence {xn} in C by (1.11)
for n ∈ N. Then {xn} converges strongly to the element of F (S) nearest to u.

Theorem 3.3. Let H be a real Hilbert space and S = {T (s) : 0 ≤ s < ∞} be a
nonexpansive semigroup on H such that F (S) ̸= ∅. Then for a contraction map-
ping f : H → H with coefficient α ∈ (0, 1) and A is a bounded linear operator
on H, the sequence {αn} of parameters satisfying 0 < αn < 1, limn→∞ αn =
0,

∑∞
n=0 αn = ∞ and limn→∞ tn = ∞, the sequence {xn} defined by (1.12)

converges strongly to x̃, x̃ is the unique solution in F (S) of the variational
inequality

(3.10) ⟨(A − γf)x̃, x − x̃⟩ ≥ 0, x ∈ F (S)

or equivalently x̃ = PF (S)(I−A+γf)x̃, where P is a metric projection mapping
from H onto F (S).

Proof. Since αn → 0 , we may assume, without loss of generality, that αn <
∥A∥−1 for all n. We first show that {xn} is bounded. Let q ∈ F (S), we note
that

∥xn+1 − q∥ = ∥αnγf(xn) + (I − αnA)
1
tn

∫ tn

0

T (s)xnds − q∥

≤ αn∥γf(xn) − Aq∥ + ∥I − αnA∥ 1
tn

∫ tn

0

∥T (s)xn − q∥ds

≤ αnγ∥f(xn) − f(q)∥ + αn∥γf(q) − Aq∥ + (1 − αnγ̄)∥xn − q∥
≤ αnγα∥xn − q∥ + αn∥γf(q) − Aq∥ + (1 − αnγ̄)∥xn − q∥
= (1 − (γ̄ − γα)αn)∥xn − q∥ + αn∥γf(q) − Aq∥

= (1 − (γ̄ − γα)αn)∥xn − q∥ + (γ̄ − γα)αn
∥γf(q) − Aq∥

γ̄ − γα
, ∀n ≥ 0.

By induction, we get

∥xn − q∥ ≤ max{∥x0 − q∥, ∥γf(q) − Aq∥
γ̄ − γα

}, n ≥ 0.

This implies that {xn} and f(xn) are bounded. Put z0 = PF (S)x0 and set
D = {z ∈ H : ∥z − z0∥ ≤ ∥x0 − z0∥ + 1

γ̄−γα∥γf(z0) − Az0∥}. Then D is
nonempty closed bounded convex subset of H which T (s)-invariant for each
s ∈ [0,∞) and contains {xn}. So without loss of generality, we may assume
S = {T (s) : 0 ≤ s < ∞} is nonexpansive semigroup on D. By Lemma 2.6, we
get

lim
n→∞

∥ 1
tn

∫ tn

0

T (s)xnds − T (h)(
1
tn

∫ tn

0

T (s)xnds)∥ = 0
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for every h ∈ [0,∞). Let yn := 1
tn

∫ tn

0
T (s)xnds and let x̃ be the unique solution

in F (S) of the variational in equality (3.10). Next we show that

(3.11) lim sup
n→∞

⟨x̃ − yn, Ax̃ − γf(x̃)⟩ ≤ 0.

Let {ynj} be a subsequence of {yn} such that

lim
j→∞

⟨x̃ − ynj
, Ax̃ − γf(x̃)⟩ = lim sup

n→∞
⟨x̃ − yn, Ax̃ − γf(x̃)⟩,

and ynj ⇀ q̃ ∈ H. By Opial’s condition, we have q̃ ∈ F (S). In fact, if
q̃ ̸= T (h)q̃ for some h ∈ [0,∞), we have

lim inf
j→∞

∥ynj − q̃∥ < lim inf
j→∞

∥ynj − T (h)q̃∥

≤ lim inf
j→∞

(∥ynj − T (h)ynj∥ + ∥T (h)ynj − T (h)q̃∥)

≤ lim inf
j→∞

∥ynj − q̃∥.

This is a contradiction. Therefore, we have q̃ = T (h)q̃ for each h ≥ 0 and so
q̃ ∈ F (S). Hence by (3.10), we obtain

lim sup
n→∞

⟨x̃ − yn, Ax̃ − γf(x̃)⟩ = ⟨x̃ − q̃, Ax̃ − γf(x̃)⟩ ≤ 0

as required. Finally we shall show that xn → x̃. For each n ≥ 0, we have

∥xn+1 − x̃∥2(3.12)

= ∥(I − αnA)(
1
tn

∫ tn

0

T (s)xnds − x̃) + αn(γf(xn) − Ax̃)∥2

= ∥(I − αnA)
1
tn

∫ tn

0

T (s)xnds − x̃∥2 + α2
n∥γf(xn) − Ax̃∥2

+ 2αn⟨(I − αnA)
1
tn

∫ tn

0

T (s)xnds − x̃, γf(xn) − Ax̃⟩

≤ (1 − αnγ̄)2∥xn − x̃∥2 + α2
n∥γf(xn) − Ax̃∥2

+ 2αnγ⟨ 1
tn

∫ tn

0

T (s)xnds − x̃, f(xn) − f(x̃)⟩

+ 2αn⟨
1
tn

∫ tn

0

T (s)xnds − x̃, γf(x̃) − Ax̃⟩

− 2α2
n⟨A(

1
tn

∫ tn

0

T (s)xnds − x̃), γf(xn) − Ax̃⟩

≤ [(1 − αnγ̄)2 + 2αnγα]∥xn − x̃∥2

+ αn

[
2⟨ 1

tn

∫ tn

0

T (s)xnds − x̃, γf(x̃) − Ax̃⟩ + αn

(
∥γf(xn) − Ax̃∥2

+ 2∥A(
1
tn

∫ tn

0

T (s)xnds − x̃)∥∥γf(xn) − A(x̃)∥
)]
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≤ (1 − 2(γ̄ − γα)αn)∥xn − x̃∥2

+ αn

{
2⟨ 1

tn

∫ tn

0

T (s)xnds − x̃, γf(x̃) − Ax̃⟩ + αn

(
∥γf(xn) − Ax̃∥2

+ 2∥A(
1
tn

∫ tn

0

T (s)xnds − x̃)∥∥γf(xn) − A(x̃)∥ + γ̄2∥xn − x̃∥2
)}

= (1 − 2(γ̄ − γα)αn)∥xn − x̃∥2 + αnβn

where βn = 2⟨ 1
tn

∫ tn

0
T (s)xnds−x̃, γf(x̃)−Ax̃⟩+αnL and L ≥ ∥γf(xn)−Ax̃∥2+

2∥A( 1
tn

∫ tn

0
T (s)xnds−x̃)∥∥γf(xn)−A(x̃)∥+γ̄2∥xn−x̃∥2 for all n ≥ 0. It is easily

seen that 2(γ̄−γα)αn → 0,
∑∞

n=1 2(γ̄−γα)αn = ∞ and lim supn→∞
βn

2(γ̄−γα) ≤
0 by (3.11). By Lemma 2.3, the sequence {xn} converges strongly to a fixed
point x̃ of T . ¤

Fix u ∈ C ⊆ H, taking f(x) = u for all x ∈ H, A = I and γ = 1 in
Theorem 3.3, we get the following corollary.

Corollary 3.4 (Shimizu and Takahashi [9]). Let C be a nonempty closed con-
vex subset of a real Hilbert space H. and S = {T (s) : 0 ≤ s < ∞} be a
nonexpansive semigroup on C such that F (S) ̸= ∅. Let {αn} be a sequence in
(0, 1) which satisfies limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Let u ∈ C and {tn}

is a positive real divergent sequence, then the sequence {xn} defined by (1.13)
converges strongly to a common fixed point PF (S)u.
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