• Title/Summary/Keyword: vapor transmission

Search Result 377, Processing Time 0.025 seconds

Synthesis of Graphene Using Thermal Chemical Vapor Deposition and Application as a Grid Membrane for Transmission Electron Microscope Observation (열화학증기증착법을 이용한 그래핀의 합성 및 투과전자현미경 관찰용 그리드 멤브레인으로의 응용)

  • Lee, Byeong-Joo;Jeong, Goo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • We present a method of graphene synthesis with high thickness uniformity using the thermal chemical vapor deposition (TCVD) technique; we demonstrate its application to a grid supporting membrane using transmission electron microscope (TEM) observation, particularly for nanomaterials that have smaller dimensions than the pitch of commercial grid mesh. Graphene was synthesized on electron-beam-evaporated Ni catalytic thin films. Methane and hydrogen gases were used as carbon feedstock and dilution gas, respectively. The effects of synthesis temperature and flow rate of feedstock on graphene structures have been investigated. The most effective condition for large area growth synthesis and high thickness uniformity was found to be $1000^{\circ}C$ and 5 sccm of methane. Among the various applications of the synthesized graphenes, their use as a supporting membrane of a TEM grid has been demonstrated; such a grid is useful for high resolution TEM imaging of nanoscale materials because it preserves the same focal plane over the whole grid mesh. After the graphene synthesis, we were able successfully to transfer the graphenes from the Ni substrates to the TEM grid without a polymeric mediator, so that we were able to preserve the clean surface of the as-synthesized graphene. Then, a drop of carbon nanotube (CNT) suspension was deposited onto the graphene-covered TEM grid. Finally, we performed high resolution TEM observation and obtained clear image of the carbon nanotubes, which were deposited on the graphene supporting membrane.

Ordering in InGaAsP Epitaxial Layers Grown by low Pressure metalorganic Chemical Vapor Deposition (저압 MOCVD 방법으로 성장된 InGaAsP 에피층에서의 ordering 현상)

  • 김대연;문영부;이태완;윤의준;이정용;정현식
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.187-194
    • /
    • 1998
  • InGaAsP epitaxial layers lattice matched to InP were grown at 600 and $620^{\circ}C$ by low pressure metalorganic chemical vapor deposition. Solid phase composition of group III was controlled by the diffusion flux gas phase to the reachion surface. For the case of group V, the difference of As and P vapor pressure and pyrolysis efficiency of $PH_3$and $AsH_3$ mainly determined their in corporation into solid. An abnormal behavior of peak energy shift was observed below 75K in temperature variant photoluminescence study. This abnormal behavior was explained by the difference in order of ordering which makes spatial variation of energy gap in InGaAsP layer and this explanation was supported by the analyses of transmission electron microscopy and transmission spectroscopy.

  • PDF

Empirical relationship between band gap and synthesis parameters of chemical vapor deposition-synthesized multiwalled carbon nanotubes

  • Obasogie, Oyema E.;Abdulkareem, Ambali S.;Mohammed, Is'haq A.;Bankole, Mercy T.;Tijani, Jimoh. O.;Abubakre, Oladiran K.
    • Carbon letters
    • /
    • v.28
    • /
    • pp.72-80
    • /
    • 2018
  • In this study, an empirical relationship between the energy band gap of multi-walled carbon nanotubes (MWCNTs) and synthesis parameters in a chemical vapor deposition (CVD) reactor using factorial design of experiment was established. A bimetallic (Fe-Ni) catalyst supported on $CaCO_3$ was synthesized via wet impregnation technique and used for MWCNT growth. The effects of synthesis parameters such as temperature, time, acetylene flow rate, and argon carrier gas flow rate on the MWCNTs energy gap, yield, and aspect ratio were investigated. The as-prepared supported bimetallic catalyst and the MWCNTs were characterized for their morphologies, microstructures, elemental composition, thermal profiles and surface areas by high-resolution scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectroscopy, thermal gravimetry analysis and Brunauer-Emmett-Teller. A regression model was developed to establish the relationship between band gap energy, MWCNTs yield and aspect ratio. The results revealed that the optimum conditions to obtain high yield and quality MWCNTs of 159.9% were: temperature ($700^{\circ}C$), time (55 min), argon flow rate ($230.37mL\;min^{-1}$) and acetylene flow rate ($150mL\;min^{-1}$) respectively. The developed regression models demonstrated that the estimated values for the three response variables; energy gap, yield and aspect ratio, were 0.246 eV, 557.64 and 0.82. The regression models showed that the energy band gap, yield, and aspect ratio of the MWCNTs were largely influenced by the synthesis parameters and can be controlled in a CVD reactor.

Enhanced characteristics of TCO films with $(SiO_2)_3(ZnO)_7$ gas barrier layer on various plastic substrates (다양한 플라스틱 기판위에 $(SiO_2)_3(ZnO)_7$ 보호층을 갖는 투명 전도성 박막들의 특성 향상)

  • Kwon, Oh-Jeong;Kim, Dong-Yung;Ryu, Sung-Won;Sohn, Sun-Young;Hong, Woo-Pyo;Kim, Hwa-Min;Hong, Jae-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.283-284
    • /
    • 2008
  • Electrical and optical characteristics of indium tin oxide (ITO) and indium zinc oxide (IZO) films without and with $(SiO_2)_3(ZnO)_7$ at.% (SZO) film deposited on poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate (PET) substrates as a gas barrier layer for flexible display were studied. The ITO and IZO films with SZO gas barrier layer showed the improved properties which were both the high transmittance of average 80% in the visible light range and the decreased sheet resistance as compared to those of ITO and IZO films without SZO layer. Particularly, the PEN substrate with only SZO gas barrier layer had a low water vapor transmission rate (WVTR) of $\sim10^{-3}g/m^2$/day. Thus, we suggest that the SZO film with protection ability against the water vapor permeation can be applied to gas barrier layer for flexible display.

  • PDF

Dark-field Transmission Electron Microscopy Imaging Technique to Visualize the Local Structure of Two-dimensional Material; Graphene

  • Na, Min Young;Lee, Seung-Mo;Kim, Do Hyang;Chang, Hye Jung
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.23-31
    • /
    • 2015
  • Dark field (DF) transmission electron microscopy image has become a popular characterization method for two-dimensional material, graphene, since it can visualize grain structure and multilayer islands, and further provide structural information such as crystal orientation relations, defects, etc. unlike other imaging tools. Here we present microstructure of graphene, particularly, using DF imaging. High-angle grain boundary formation wass observed in heat-treated chemical vapor deposition-grown graphene on the Si substrate using patch-quilted DF imaging processing, which is supposed to occur by strain around multilayer islands. Upon the crystal orientation between layers the multilayer islands were categorized into the oriented one and the twisted one, and their local structure were compared. In addition information from each diffraction spot in selected area diffraction pattern was summarized.

Water-Assisted Synthesis of Carbon Nanotubes at Low Temperature and Low Pressure (물을 첨가한 탄소나노튜브의 저온 저압 합성)

  • Kim, Young-Rae;Jeon, Hong-Jun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.395-395
    • /
    • 2008
  • Water-assisted synthesis of carbon nanotubes (CNTs) has been intensively studied in recent years, reporting that water vapor enhances the activity and lifetime of metal catalyst for the CNT growth. While most of these studies has been focused on the supergrowth of CNTs at high temperature, rarely has the similar approach been made for the CNT synthesis at low temperature. Since the metal catalyst are much less active at lower temperature, we expect that the addition of water vapor may increase the activity of catalyst more largely at lower temperature. We synthesized multi-walled CNTs at temperature as low as $360^{\circ}C$ by introducing water vapor during growth. The water addition caused CNTs to grow ~3 times faster. Moreover, the water-assisted growth prolonged the termination of CNT growth, implying the enhancement of catalyst lifetime. In general, a thinner catalyst layer is likely to produce smaller-diameter, longer CNTs. In a similar manner, the water vapor had a greater effect on the growth of CNTs for a smaller thickness of catalyst in this study. To figure out the role of process gases, CNTs were grown in the first stage and then exposed to each of process gases in the second stage. It was shown that water vapor and hydrogen did not etch CNTs while acetylene led to the additional growth of CNTs even faster in the second stage. As-grown CNTs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and Raman spectroscopy.

  • PDF

Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate (Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘)

  • Song, W.Y.;Shin, T.I.;Lee, H.J.;Kim, H.;Kim, S.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.256-259
    • /
    • 2006
  • The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.

Growth of Amorphous SiOx Nanowires by Thermal Chemical Vapor Deposition Method (열화학 기상 증착법에 의한 비정질 SiOx 나노와이어의 성장)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.123-128
    • /
    • 2017
  • Nanostructured materials have received attention due to their unique electronic, optical, optoelectrical, and magnetic properties as a results of their large surface-to-volume ratio and quantum confinement effects. Thermal chemical vapor deposition process has attracted much attention due to the synthesis capability of various structured nanomaterials during the growth of nanostructures. In this study, silicon oxide nanowires were grown on Si\$SiO_2$(300 nm)\Pt(5~40 nm) substrates by two-zone thermal chemical vapor deposition with the source material $TiO_2$ powder via vapor-liquid-solid process. The morphology and crystallographic properties of the grown silicon oxide nanowires were characterized by field-emission scanning electron microscope and transmission electron microscope. As results of analysis, the morphology, diameter and length, of the grown silicon oxide nanowires are depend on the thickness of the catalyst films. The grown silicon oxide nanowires exhibit amorphous phase.

Relative Absorption Edges of GaN/InGaN/GaN Single Quantum Wells and InGaN/GaN Heterostructures by Metalorganic Chemical Vapor Deposition (유기금속화학기상증착법으로 성장된 GaN/InGaN/GaN 단양자 우물층과 InGaN/GaN 이종접합 구조의 광학적 특징)

  • Kim, Je-Won;Son, Chang-Sik;Jang, Yeong-Geun;Choe, In-Hun;Park, Yeong-Gyun;Kim, Yong-Tae;Ambacher, O.;Ctutzmann, M.
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.42-45
    • /
    • 1999
  • The room temperature optical transmission spectra of GaN /InGaN/GaN single quantum wells (SQW) and InGaN/GaN heterostructures grwon by low pressure metalorganic chemical vapor deposition have been measured. The dependence of the absorption edges of the GaN/InGaN/GaN SQW on the well width has been determined from the transmission spectra. The result shows that the absorption edge of GaN/InGaN/GaN SQW shifts towards lower energy as increasing the well width. The dependence of the absorption edges of the InGaN/GaN heterostructures on InN mole fraction has also been determined from the transmission spectra. The result is compared with calculated values obtained from Vegards's laws. Our result shows a good agreement with the calculated values.

  • PDF

Study on Water Vapor and Oxygen Transmission Rates in Inorganic Composite Films to improvement life-time of OLEDs (유기EL의 수명향상을 위한 혼합무기박막의 투습율 및 투산소율 특성 연구)

  • Kim, Young-Min;Lee, Joo-Won;Kim, Jong-Moo;Park, Jung-Soo;Sung, Man-Young;Jang, Jin;Ju, Byeong-Kwon;Kim, Jai-Kyeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.189-192
    • /
    • 2004
  • To improvement life-time of the organic light emitting diodes(OLEDs). We investigate the inorganic composite film based on MgO and $SiO_2$ to protect from the moisture and oxygen. The inorganic composite films are added the base materials to the co-operate materials using the mixed process and it is deposited on plastic substrate by e-beam evaporator. In order to analyze as kinds of inorganic materials, Water Vapor method of Transmission Rate (WVTR) and Oxygen Transmission Rate (OTR) are measured by Permatran equipment(MOCON Corp.). For comparison. an MgD- and $SiO_2$-based composite film has lower values of WVTR and OTR than inorganic composite/compound films of ones. The results obtained here shows that this film is suitable for passivation layer to extend the life-time of OLEDs.

  • PDF