Empirical relationship between band gap and synthesis parameters of chemical vapor deposition-synthesized multiwalled carbon nanotubes |
Obasogie, Oyema E.
(Chemical Engineering Department, Federal University of Technology)
Abdulkareem, Ambali S. (Chemical Engineering Department, Federal University of Technology) Mohammed, Is'haq A. (Chemical Engineering Department, Federal University of Technology) Bankole, Mercy T. (Nanotechnology Group, Centre for Genetic Engineering and Biotechnology (CGEB), Federal University of Technology) Tijani, Jimoh. O. (Nanotechnology Group, Centre for Genetic Engineering and Biotechnology (CGEB), Federal University of Technology) Abubakre, Oladiran K. (Nanotechnology Group, Centre for Genetic Engineering and Biotechnology (CGEB), Federal University of Technology) |
1 | Bellucci S, Onorato P. Transport Properties in Carbon Nanotubes. In: Bellucci S, ed. Physical Properties of Ceramic and Carbon Nanoscale Structures. Lecture Notes in Nanoscale Science and Technology, Springer, Berlin, 45 (2011). https://doi.org/10.1007/978-3-642-15778-3_2. |
2 | Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R. Methods for carbon nanotubes synthesis: review. J Mater Chem, 21, 15872 (2011). https://doi.org/10.1039/c1jm12254a. DOI |
3 | Mohammed IA, Bankole MT, Abdulkareem AS, Ochigbo SS, Afolabi AS, Abubakre OK. Full factorial design approach to carbon nanotubes synthesis by CVD method in argon environment. S Afr J Chem Eng, 24, 17 (2017). https://doi.org/10.1016/j.sajce.2017.06.001. |
4 | Mhlanga SD, Coville NJ. Iron-cobalt catalysts synthesized by a reverse micelle impregnation method for controlled growth of carbon nanotubes. Diamond Relat Mater, 17, 1489 (2008). https://doi.org/10.1016/j.diamond.2008.01.049. DOI |
5 | Liu C, Cheng HM. Carbon nanotubes: controlled growth and application. Mater Today, 16, 19 (2013). https://doi.org/10.1016/j.mattod.2013.01.019. DOI |
6 | Allaedini G, Tasirin SM, Aminayi P, Yaakob Z, Talib MZM. Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over tri-metallic Ni-Co-Fe catalyst. React Kinet Mech Catal, 116, 385 (2015). https://doi.org/10.1007/s11144-015-0897-1. DOI |
7 | Duan X, Wang D, Qian G, Walmsley JC, Holmen A, Chen D, Zhou X. Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer-Tropsch synthesis of lower olefins. J Energy Chem, 25, 311 (2016). https://doi.org/10.1016/j.jechem.2016.01.003. DOI |
8 | Abdalla S, Al-Marzouki F, Al-Ghamdi AA, Abdel-Daiem, A. different technical applications of carbon nanotubes. Nanoscale Res Lett, 10, 358 (2015). https://doi.org/10.1186/s11671-015-1056-3. DOI |
9 | Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV. Carbon nanotubes: sensor properties. A review. Mod Electron Mater, 2, 95 (2016). https://doi.org/10.1016/j.moem.2017.02.002. DOI |
10 | Issi JP, Langer L, Heremans J, Olk CH. Electronic properties of carbon nanotubes: experimental results. Carbon, 33, 941 (1995). https://doi.org/10.1016/0008-6223(95)00023-7. DOI |
11 | Herranen O. Experimental Characterization of Electronic, Structural and Optical Properties of Individual Carbon Nanotubes, University of Jyvaskyla, Jyvaskyla, Finland, PhD Thesis (2014). |
12 | Kharlamova MV, Volykhov AA, Yashina LV, Egorov AV, Lukashin AV. Experimental and theoretical studies on the electronic properties of praseodymium chloride-filled single-walled carbon nanotubes. J Mater Sci, 50, 5419 (2015). https://doi.org/10.1007/s10853-015-9086-x. DOI |
13 | Barone V, Scuseria GE. Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: beyond the local density approximation. J Chem Phys, 121, 10376 (2004). https://doi.org/10.1063/1.1810132. DOI |
14 | Zhao J, Park H, Han J, Lu JP. Electronic properties of carbon nanotubes with covalent sidewall functionalization. J Phys Chem B, 108, 4227 (2004). https://doi.org/10.1021/jp036814u. DOI |
15 | Qiao W, Bai H, Zhu Y, Huang Y. Structure and electronic properties of the double-wall nanotubes constructed from nanotubes encapsulated inside zigzag carbon nanotubes. J Phys Condens Matter, 24, 185302 (2012). https://doi.org/10.1088/0953-8984/24/18/185302. DOI |
16 | Boutahir M, Rahmani AH, Fakrach B, Chadli H, Rahmani A. Theoretical study of electronic and vibrational properties of dimer of single-wall carbon nanotubes. Int J Hydrogen Energy, 41, 20874 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.125. DOI |
17 | Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ. Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett, 95, 086601 (2005). https://doi.org/10.1103/physrevlett.95.086601. DOI |
18 | Yang N, Yang D, Chen L, Liu D, Cai M, Fan X. A first-principle theoretical study of mechanical and electronic properties in graphene single-walled carbon nanotube junctions. Materials, 10, 1300 (2017). https://doi.org/10.3390/ma10111300. DOI |
19 | Saito R, Dresselhaus G, Dresselhaus MS. Trigonal warping effect of carbon nanotubes. Phys Rev B, 61, 2981 (2000). https://doi.org/10.1103/physrevb.61.2981. DOI |
20 | Poncharal P, Berger C, Yi Y, Wang ZL, de Heer WA. Room temperature ballistic conduction in carbon nanotubes. J Phys Chem B, 106, 12104 (2002). https://doi.org/10.1021/jp021271u. DOI |
21 | Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y. Optical properties of single-wall carbon nanotubes. Synth Met, 103, 2555 (1999). https://doi.org/10.1016/s0379-6779(98)00278-1. DOI |
22 | Abdulkareem AS, Kariim I, Bankole MT, Tijani JO, Abodunrin TF, Olu SC. Synthesis and characterization of tri-metallic Fe-Co-Ni catalyst supported on for multi-walled carbon nanotubes growth via chemical vapor deposition technique. Arabian J Sci Eng, 42, 4365 (2017). https://doi.org/10.1007/s13369-017-2478-2. DOI |