Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2017.7.5.123

Growth of Amorphous SiOx Nanowires by Thermal Chemical Vapor Deposition Method  

Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
Publication Information
Journal of Convergence for Information Technology / v.7, no.5, 2017 , pp. 123-128 More about this Journal
Abstract
Nanostructured materials have received attention due to their unique electronic, optical, optoelectrical, and magnetic properties as a results of their large surface-to-volume ratio and quantum confinement effects. Thermal chemical vapor deposition process has attracted much attention due to the synthesis capability of various structured nanomaterials during the growth of nanostructures. In this study, silicon oxide nanowires were grown on Si\$SiO_2$(300 nm)\Pt(5~40 nm) substrates by two-zone thermal chemical vapor deposition with the source material $TiO_2$ powder via vapor-liquid-solid process. The morphology and crystallographic properties of the grown silicon oxide nanowires were characterized by field-emission scanning electron microscope and transmission electron microscope. As results of analysis, the morphology, diameter and length, of the grown silicon oxide nanowires are depend on the thickness of the catalyst films. The grown silicon oxide nanowires exhibit amorphous phase.
Keywords
Amorphous; Nanowire; Silicon oxide; Thermal CVD; Vapor-Liquid-Solid process;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. H. Lee, D. H. Lee, W. J. Lee & S. O. Kim. (2011). Tailored assembly of carbon nanotubes and graphene. Advanced Functional Materials, 21(8), 1338-1354. DOI : 10.1002/adfm.201190021   DOI
2 F. Yang, D. K. Taggart & R. M. Penner. (2010). Joule heating a palladium nanowire sensor for accelerated response and recovery to hydrogen gas. Small, 6(13), 1422-1429. DOI : 10.1002/smll.201000145   DOI
3 B. Kumar, D. H. Lee, S. H. Kim, B. Yang, S. Maeng & S. W. Kim. (2010). General route to single-crystalline SnO nanosheets on arbitrary substrates. The Journal of Physical Chemistry C, 114(25), 11050-11055. DOI : 10.1021/jp101682v   DOI
4 K. C. Kim, D. H. Lee & S. Maeng. (2012). Synthesis of novel pure SnO nanostructures by thermal evaporation. Materials Letters, 86, 119-121. DOI : 10.1016/j.matlet.2012.07.019   DOI
5 H. K. Park et al. (2006). Vertically Well-Aligned ZnO Nanowires on c-$Al_2O_3$ and GaN Substrates by Au Catalyst. ETRI journal, 28(6), 787-789. DOI : 10.4218/etrij.06.0206.0138   DOI
6 J. H. Shin, J. Y. Song, Y. H. Kim & H. M. Park. (2010). Low temperature and self-catalytic growth of tetragonal SnO nanobranch. Materials Letters, 64(9), 1120-1122. DOI : 10.1016/j.matlet.2010.02.028   DOI
7 J. M. Wu, H. C. Shih, W. T. Wu, Y. K. Tseng & I. C. Chen. (2005). Thermal evaporation growth and the luminescence property of $TiO_2$ nanowires. Journal of crystal Growth, 281(2), 384-390. DOI : 10.1016/j.jcrysgro.2005.04.018   DOI
8 Y. Shi, Q. Hu, H. Araki, H. Suzuki, H. Gao, W. Yang & T. Noda.(2005). Long Si nanowires with millimeter-scale length by modified thermal evaporation from Si powder. Applied Physics A: Materials Science & Processing, 80(8), 1733-1736. DOI : 10.1007/s00339-003-2469-x   DOI
9 S. Iijima. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56. DOI : 10.1038/354056a0   DOI
10 Z. W. Pan, Z. R. Dai & Z. L. Wang. (2001). Nanobelts of semiconducting oxides. Science, 291(5510), 1947-1949. DOI : 10.1126/science.1058120   DOI
11 M. H. Huang et al. (2001). Room-temperature ultraviolet nanowire nanolasers. Science, 292(5523), 1897-1899. DOI : 10.1126/science.1060367   DOI
12 D. Gao. R. He, C. Carraro, R. T. Howe, P. Yang & R. Maboudian. (2005). Selective growth of Si nanowire arrays via galvanic displacement processes in water-in-oil microemulsions. Journal of the American Chemical Society, 127(13), 4574-4575. DOI : 10.1021/ja043645y   DOI
13 J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang & H. Park. (2006). Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams. Nano letters, 6(10), 2313-2317. DOI : 10.1021/nl061831r   DOI
14 C. H. Wang, A. S. W. Wong & G. W. Ho. (2007). Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays. Langmuir, 23(24), 11960-11963. DOI : 10.1021/la702296q   DOI
15 Y. S. Lai, J. L. Wang, S. C. Liou & C. H. Tu. (2008). Tailoring of amorphous SiOx nanowires grown by rapid thermal annealing. Chemical Physics Letters, 453(1), 97-100. DOI : 10.1016/j.cplett.2008.01.026   DOI
16 A. M. Morales & C. M. Lieber. (1998). A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 279(5348), 208-211. DOI : 10.1126/science.279.5348.208   DOI
17 Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee & Z. L. Wang. (2001). Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. The Journal of Physical Chemistry B, 105(13), 2507-2514. DOI : 10.1021/jp004253q   DOI